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Abstract

Magnetichydrodynamic and thermal radiation effects of nanofluid over a stretching

sheet are theoretically studied by using shooting method. The main aim of the

present research is to observe in detail the effect of MHD and thermal radiation

by inclucating Cattaneo-Christov double diffusion also taking into consideration,

the factors like thermophoresis diffusion, Brownian motion, thermal diffusitivity

and chemical reaction on a nanofluid that streams along a stretchy sheet. During

the process, similarity transformations have been applied to convert nonlinear

partial differential equations into ordinary differential equations. During this study

computational techniques are kept in handy to solve the momentum, energy and

concenteration equations of moving nanofluid using the shooting method. Tables

and graphs clearly depict the effect of parameters such as nonlinear stretching

sheet parameter, magnetic field parameter, Heat generation parameter, Prandtl

number, thermophoresis parameter, brownian motion parameter, lewis number

and chemical reaction parameter on the velocity profile, temperature distribution,

concenteration distribution, skin friction coefficient, Nusselt number and Sherwood

number. The result shows that increasing the values of the magnetic parameter ,

the velocity profile decreases while the temperature profile increases. Rising the

values of Prandtl number results in a decrease in the temperature profile. Due to

the ascending values of the parameter γ1, the values of the local Nusselt number

are increased while the Sherwood number is decreased.
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Chapter 1

Introduction

Colloidal suspension of nanoparticles into base fluid has introduced a new class of

fluids called nanofluids. Nanofluid posses remarkable properties that the technol-

ogy was unlikely to attain through conventional fluids. These conventional fluids

when added by nanosized particles exhibit enhanced strength, chemical reactiv-

ity. electrical conductivity, supermagnetic characteristics and in particular heat

transfer and thermal conductivity. Carbon nanotubes, metal oxides and nano

polymers are some examples of nano materials that are dispersed in conventional

fluids by methods like dispersion, chemical precipitation/ condensation etc. Ap-

plications of nano fluids in sectors like aeronautics, medicene, pharmaceutics and

photoelectric has produced marvels for example brake fluids, nuclear reactions,

improvements in cooling transformer oil, power plants, diseases generators and

even in space technologies. Choi and Eastman [1] is the person who introduced

the term nanofluids through their experimental work. This invention opened doors

for further researches and provided humanity with platform to extract more out of

it. The earliest works on nanofluids were done by Wang and Majumdar [2], Yang

et alia [3], Jahani et alia [4] and Das et alia [5] etc. The introductory nanofluid

model was put forth by Buongiorno [6] which got preceded by Tiwari and Das [7]

model. Buongiorno [6] targeted Brownian motion and thermophoresis to explain

fluctuatios in thermal parameters where as Tiwari and Das [7] worked based on

volume fractions.

1
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Khan and Pop [8] were able to generate first ever work on laminar flow of nano-

fluid over a stretching surface emphasizing that the behaviour can also be well ob-

served in nanofluids. Noghrehabadi et al. [9] and M.Hady et al. [10] performed

similar experiments depicting behaviours of nanofluids over a stretching sheet.

Wang [11] was the first who theoretically and experimentally noted down the

flow towards a shrinking sheet. Out of many significant characteristics, the most

advanceed to grasp interest are MHD and thermal radiation effects on nanofluids.

Nadeem et al. [12] used Homotopy method to observe two dimensional flow of

heat transfer considering Williamson nanofluids, these nanofluids are viscous non-

eleastic fluids. His work was followed by PrasannaKumara et al. [13] analysing

chemical activity on a porous medium. Krishnamurty et al [14] provided an ex-

tension to this phenomenon. More work on Williamson nanofluids was presented

by Kothandapani and Prakash [15] who studied MHD and thermal effects on peri-

staltic flow. The presentation of heat tranfer on two phase model with effects of

the Magnetohydrodynamic and the thermal radiation was made in its earliest form

by Sheikholeslami et al. [16]. Kleinstreuer and Feng [17] investigated thermal

conductivity improvement experimentally which was taken up by Yu et al. [18]

who performed comparative studies keeping in view heat transfer.

Tzeng et al. [19] emphasized on the significance of heat transfer in nanotechnol-

ogy. They experimented with engine transmission oil in the early 2000. Results

depicted the reduced manual transmission temperatures and a better engine effi-

ciency. Mabood et al. [20] who was a pioneer in this area, studied the flow of

a magnetohydrodynamic boundary layer via a nonlinear stretching sheet. Zhang

et alia [21] preformed a similar sequence of events but using a porous medium

whereas Hamad at al. [22] extended Zhang et al. [21] work by taking into account

megnatohydrodynamic effects while Nadeem and Haq [23] work targeted a porous

shrinking sheet. MHD stagnation point was theoretically and experimentally ex-

plored by Ibrahim et al. [24] whereas Srinivasacharya et al. [25] examined MHD

boundary layer. Bhatti et al. [26] critically evaluated Reynolds number’s relation

to the magnetic field. This work was taken on experimental basis by Xuan and

Li [27] who took volume percentage into consideration this time. Magnetic field
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parameter, Brownian motion, heat generation and temperature field were evalu-

ated by Poply et al. [28] under the effect of MHD. Factors that effect velocity and

temperature of Cu and Al203 nanoparticles were demonstrated by Thumma et al.

[29]. Shateyi et al. [30] and Aly et al. [31] discussed the MHD laminar bound-

ary flow across moving surfaces by implying different approaches and methods.

Chamkha [32] and Uddin et al. [33] successfully described MHD boundary layer

flow with convective slip flow under the effect of heat. Malik et al. [34] unlike

others chose a non-Newtonian fluid for instant Casson nanofluid to discuss velocity

changes under MHD effects. Ganga [35], Khan et al. [36] and Ahmed [37] also

contributed significantly by considering magnetohydrodynamics in the fluid flow

problems. The fisrt people to explain heat and mass transmission, respectively,

were Fourier [38] and Fick [39]. They claim that the distributions of temperature

and concentration have parabolic equations. Later, Cattaneo [40] modified the

Fourier’s rule of heat conduction by include the term for thermal relaxation and

explored heat transmission with limited speed in thermal waves as a result. In

order to reach the material-invariant formulation, Christov [41] developed a new

design.

1.1 Thesis Contributions

The analysis of Magnetohydrodynamic radiative nanofluid flow by considering

Cattaneo-Christov double diffusion, Brownian motion and Soret effect has not

been investigated yet. Keeping in view, present research work is an attempt to fill

this gap, and the finding of present study is a noval addition in the literature. Dur-

ing the process, similarity transformations have been applied to convert nonlinear

PDEs into system of dimensionless ODEs and the results are produced by using

shooting method. The numerical results are deduced graphically by aid of MAT-

LAB. Tables and graphs clearly depict the effect of significant paramters on the

velocity profile f ′(ξ), temperature profile θ(ξ), concenteration profile φ(ξ), Skin

friction coefficient Cf , Local Nusselt number Nux and Local Sherwood number

Shx.
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1.2 Layout of Thesis

A concise outline of the thesis content is given below.

Chapter 2 contains certain terminologies and fundamental definitions , that will

be helpful to understand the concepts discussed later on.

Chapter 3 provides an analytical investigation of MHD nanofluid. The numerical

results of the governing flow equations are derived by the shooting method.

Chapter 4 inculdes an extension of the work presented in chapter 3 by consid-

ering Cattaneo-Christov double diffusion, Brownian motion and chemical reaction.

Chapter 5 provides the concluding remarks of the thesis.

References used in the thesis are mentioned in Biblography.



Chapter 2

Preliminaries

This chapter comprise certain fundamental definitions and governing laws, that

will be helpful in the subsequent chapters.

2.1 Some Basic Terminologies

Definition 2.1.1 (Fluid)

“A substance that cannot keep its own shape but instead adopts that of its con-

tainer is referred to as a fluid.” [42]

Definition 2.1.2 (Fluid Mechanics)

“The field of study known as fluid mechanics examines the behaviour of fluids

(liquids or gases) both at rest and in motion.” [43]

Definition 2.1.3 (Fluid Dynamics)

“The area of mathematics and physics that deals with describing and understand-

ing how liquids and gases move.” [43]

5
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Definition 2.1.4 (Fluid Statics)

“The area of fluid mechanics known as fluid statics is responsible for studying

incompressible fluids at rest.” [43]

Definition 2.1.5 (Viscosity)

“The resistance of a fluid to a change in shape or movement of neighbouring

components relative to one another is known as its viscosity.. Mathematically,

µ =
τ
∂u
∂y

,

where µ is viscosity coefficient, τ is shear stress and ∂u
∂y

represents the velocity

gradient.” [43]

Definition 2.1.6 (Kinematic Viscosity)

“It is described as the relationship between the fluid’s dynamic viscosity and den-

sity”. It is represented by the symbol ν referred to as nu. Mathematically,

ν =
µ

ρ
.′′ [43]

Definition 2.1.7 (Thermal Conductivity)

“The Fourier heat conduction law states that the heat flow is proportional to the

temperature gradient. The coefficient of proportionality is a material parameter

known as the thermal conductivity which may be a function of a number of vari-

ables. [44]

Definition 2.1.8 (Thermal Diffusivity)

“The rate at which heat diffuses by conducting through a material depends on the

thermal diffusivity and can be defined as,

α =
k

ρCp
,



Basic Terminologies 7

where α is the thermal diffusivity, k is the thermal conductivity, ρ is the density

and Cp is the specifc heat at constant pressure.” [45]

2.2 Types of Fluid

Definition 2.2.1 (Ideal Fluid)

“A fluid, which is incompressible and has zero viscosity, is known as an ideal fluid.

Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some vis-

cosity.” [43]

Definition 2.2.2 (Real Fluid)

“A fluid is considered to be real if it has viscosity. All of the fluids are actual fluids

in real life.” [43]

Definition 2.2.3 (Newtonian Fluid)

“A Newtonian fluid is defined as one with constant viscosity, with zero shear rate

at zero shear stress.” [43]

Definition 2.2.4 (Non-Newtonian Fluid)

“A non-Newtonian fluid is a fluid that does not follow Newton law of viscosity,

i.e., constant viscosity independent of stress.

τxy ∝
(
du

dy

)m
, m 6= 1

τxy = µ

(
du

dy

)m
.” [43]

Definition 2.2.5 (Magnetohydrodynamics)

“The interaction of magnetic fields and fluid flow is the subject of magnetohy-

drodynamics (MHD). The fluids under consideration must be both electrically
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conducting and non-magnetic, which restricts us to liquids, hot ionic gases, and

strong electrolyte.” [46]

2.3 Types of Flow

Definition 2.3.1 (Rotational Flow)

“Rotational flow is that type of flow in which the fluid particles while flowing along

stream-lines, also rotate about their own axis.” [43]

Definition 2.3.2 (Irrotational Flow)

Irrotational flow is that type of flow in which the fluid particles while flowing along

stream-lines, do not rotate about their own axis then this type of flow is called

irrotational flow.” [43]

Definition 2.3.3 (Compressible Flow)

“Compressiible flow is that type of flow in the the density of the fluid changes

form point to point or in other words the density (ρ) is not constant for the fluid,

Mathematically,

ρ 6= k,

where k stands constant.” [43]

Definition 2.3.4 (Incompressible Flow)

“Incompressible flow is that type of flow in which the the density is constant

for the fluid. Liquids are generally incompressible while gases are compressibles,

Mathemtically,

ρ = k,

where k is constant.” [43]
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Definition 2.3.5 (Steady Flow)

“The flow is referred to as steady flow if the flow properties, such as depth of

flow, velocity of flow, and rate of flow at any location in open channel flow, do not

fluctuate with regard to time. Mathematically,

∂Q

∂t
= 0,

where Q is any fluid property.” [43]

Definition 2.3.6 (Unsteady Flow)

“Unsteady flow is defined as flow in an open channel that changes with respect to

time at any location in terms of velocity, depth, or rate. Mathematically,

∂Q

∂t
6= 0,

where Q is any fluid property.” [43]

Definition 2.3.7 (Internal Flow)

“Flows completely bounded by a solid surfaces are called internal or duct flows.” [42]

Definition 2.3.8 (External Flow)

“Flows over bodies immersed in an unbounded fluid are said to be an external

flows.” [42]

2.4 Modes of Heat Transfer

Definition 2.4.1 (Heat Transfer)

“The subject of physics known as ”heat transfer” studies how thermal energy

moves from one place in one media to another or from one medium to another
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when there is a temperature difference.” [44]

Definition 2.4.2 (Conduction)

“The transfer of heat within a medium due to a diffusion process is called conduc-

tion.” [44]

Definition 2.4.3 (Convection)

“Convection heat transfer is usually defined as energy transport effected by the

motion of a fluid. This convection heat transfer between two dissimilar media is

governed by Newtons law of cooling.” [44]

Definition 2.4.4 (Thermal Radiation)

“Thermal Radiation is defined as radiant (electromagnetic) energy emitted by a

medium and is solely to the temperature of the medium.” [44]

2.5 Dimensionless Numbers

Definition 2.5.1 (Prandtl Number)

“It is ratio between the momentum diffusivity ν and thermal diffusivity α.

Mathematically, it can be defined as:

Pr =
ν

α
=

µ
ρ

k
Cpρ

=
µCp
k

where µ represents the dynamics viscosty, Cp denotes specific heat, k stand for

thermal conductivity.

The relative thickness of thermal and momentum boundary layers is controlled

by Prandtl number. For small Pr, heat distributed rapidly corresponds to the

momentum.” [42]
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Definition 2.5.2 (Skin Friction Coefficient)

“The Steady flow of an incompressible gas or liquid in a long pipe of internal D.

The mean velocity is denoted by uw. Skin firiction coeficient can be defined as

Cf =
2τ0
ρu2w

where τ0 denotes the wall shear stress and ρ is the density.” [47]

Definition 2.5.3 (Nusselt Number)

“The hot surface is cooled by a cold fluid stream. The heat from the hot surface,

which is maintained at a constant temperature, is diffused through a boundary

layer and convected away by the cold stream. Mathematically,

Nu =
qL

k

where q stands for the convection heat transfer, L for the characteristic length and

k stands for thermal conductivity.” [48]

Definition 2.5.4 (Sherwod Number)

“It is the nondimensional quantity which show the ratio of the mass transport by

convection to the transfer of mass by diffusion. Mathematically:

Sh =
kL

D

here L is characteristics length, D is the mass diffusivIty and k is the mass transfer

coeffcient.” [49]

Definition 2.5.5 (Reynolds Number)

“It is defined as the ratio of inertia force of a flowing fluid and the viscous force

of the fluid. Mathematically,

Re =
V L

ν
,
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where U denotes the free stream velocity, L is the characteristics length and ν

stands for kinematic viscosity.” [43]

Definition 2.5.6 (Soret Number)

“The ratio of temperature difference to concentration is known as the Soret num-

ber.

Mathematically,

Sr =
DmKT (Tw − T∞)

Tmα(Cw − C∞)
,

where Dm denotes the mass diffusivity, KT is the thermal-diffusion and Tm is the

fluid mean temperature.” [43]

2.6 Governing Laws

Definition 2.6.1 (Continuity Equation)

“The principle of conservation of mass can be stated as the time rate of change of

mass in fixed volume is equal to the net rate of flow of mass across the surface.

Mathematically, it can be written as

∂ρ

∂t
+∇.(ρu) = 0.” [44]

Definition 2.6.2 (Momentum Equation)

“The momentum equation states that the time rate of change of linear momentum

of a given set of particles is equal to the vector sum of all the external forces acting

on the particles of the set, provided Newtons third law of action and reaction

governs the internal forces.

Mathematically, it can be written as:

∂

∂t
(ρu) +∇.[(ρu)u] = ∇.T + ρg.” [44]
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Definition 2.6.3 (Energy Equation)

“The law of conservation of energy states that the time rate of change of the total

energy is equal to the sum of the rate of work done by the applied forces and

change of heat content per unit time.

∂ρ

∂t
+∇.ρu = −∇.q +Q+ φ,

where φ is the dissipation function.” [44]

2.7 Shooting Method

Consider the following nonlinear boundary value problem to explain the shooting

method.

g′′(t) = f(t, f(t), f ′(t))

g(0) = 0, g(G) = J.

 (2.1)

To reduce the order of the above boundary value problem, introduce the following

notations.

g = Z1, g′ = Z ′1 = Z2, g′′ = Z ′2. (2.2)

As a result, (2.1) is converted into system of first order ODEs as following:

Z ′1 = Z2, Z1(0) = 0. (2.3)

Z ′2 = f(t, Z1, Z2), Z2(0) = w. (2.4)

where w is the missing initial condition which will be guessed. The Runge-Kutta

4 method will be used to numerically solve the above initial value problem. The

missing condition w should be selected as:
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Z1(G,w) = J. (2.5)

For convenience, now onward Y1(G,w) will be denoted by Y1(w).

Let us further denote Z1(w)− J by H(w), so that

H(w) = 0. (2.6)

The above equation can be solved by using Newton’s method with the following

iterative formula.

wn+1 = wn −
H(wn)
∂H(wn)
∂w

,

or

wn+1 = wn −
Z1(wn)− J

∂Z1(wn)
∂w

. (2.7)

To find ∂Z1(wn)
∂w

, introduce the following notations.

∂Z1

∂w
= Z3,

∂Z2

∂w
= Z4. (2.8)

As a result of these new notations the Newton’s iterative scheme, will then get the

form.

wn+1 = wn −
Z1(wn)− J
Z3(wn)

. (2.9)

Now differentiating the system of two first order ODEs (2.3)-(2.4) with respect to

w, we get another system of ODEs, as follows.
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Z ′3 = Z4, Z3(0) = 0. (2.10)

Z ′4 = Z3
∂f

∂w
+ Z4

∂f

∂w
, Z4(0) = 1. (2.11)

Writing all the four ODEs (2.3), (2.4), (2.10) and (2.11) together, we have the

following initial value problem.

Z ′1 = Z2, Z1(0) = 0.

Z ′2 = f(t, Z1, Z2), Z2(0) = w.

Z ′3 = Z4, Z3(0) = 0.

Z ′4 = Z3
∂f

∂w
+ Z4

∂f

∂w
, Z4(0) = 1.

The above system together will be solved numerically by Runge-Kutta method of

order four.

For the Newton’s technique, the stopping criteria is set such that.

| Y1(w)− J |< ε,

where ε > 0 is an arbitrarily small positive number.



Chapter 3

MHD Nanofluid Flow in the

Thermal Radiation Effects

Induced by a Stretching Sheet

3.1 Introduction

Flow examination of Magnetohydrodynamic nanofluid passing through a nonlin-

ear stretching sheet while being subjected to a magnetic field, heat generation and

thermal radiation numerical is presented in this chapter. The set of equations for

momentum, energy, and concenteration is attained by utilizing the boundary layer

approximation. The governing nonlinear PDEs are converted by utilizing the ap-

propriate transformation into a dimensionless ODEs. In MATLAB, the shooting

method is employed to resolve ODEs. The numerical solution for significant pa-

rameters is discussed for the velocity profile f ′(ξ), temperature distribution θ(ξ)

and concentration distribution φ(ξ) . Analysis of the obtained numerical results

are given through tables and graphs. The impact of some important physical pa-

rameters on Skin friction, Local Nusselt number and Local Sherwood number is

also analyzed. This chapter provides a detailed review of the work presented by

Krishnarao et al. [50].

16
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3.2 Mathematical Modeling

A 2D Magnetohydrodynamic investigations have been made intoo this flow of

a nanofluid cover a nonlinear stretching sheet with y = 0. Suppose that the

variable stretching velocity and variable magnetic field of the nanofluid flow are

Uw(x)=axn and B(x)=B0x
2n−1, respectively. It was believed that the cocentration

of expanding surface Tw and Cw was higher than the fixation C∞ and temperature

outside T∞ beacuse the fluid layer along the stretching surface is kept at a constant

temperature.

Figure 3.1: Systematic representation of physical model.
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The set of equations describing the flow are as follows.

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

(∂2u
∂y2

)
− σB2(x)

ρ
u, (3.2)

u
∂T

∂x
+ v

∂T

∂y
= α

(∂2T
∂y2

)
+ τ

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
]

− 1

(ρCp)

(∂qr
∂y

)
+

Q0

(ρCp)
(T − T∞), (3.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

(
∂2T

∂y2

)
. (3.4)

The associated BCs have been taken as.

u = Uw(x) = axn, V = Vw(x), T = Tw, C = Cw at y = 0,

u→ 0, v → 0, T → T∞, C → C∞, as y →∞.

 (3.5)

In this model, the direction of x is taken to be in a line with the sheet, and y is

taken to be perpendicular to it. The components of velocity for the horizontally

and vertically axes are u and v, respectively. Here, the radiativie heatflux qr is

constant. expressed as:

qr = −4σ∗

3k∗
∂T 4

∂y
,

where k∗ denotes the absorption constant and σ∗ the Stefan-Boltzman constant.

If the temperature difference is relatively minor, the Taylor series can be used to

prolong the temperature T 4 up to T∞.

T 4 = T 4
∞ + 4T 3

∞(T − T∞) + 6T 2
∞(T − T∞)2 + ...

With the higher order terms ignored, we have

T 4 = T 4
∞ + 4T 3

∞(T − T∞)

= T 4
∞ + 4T 3

∞T − 4T 4
∞

= 4T 3
∞T − 3T 4

∞.
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The mathematical model (3.1)-(3.4) were transformed into an ODEs system, the

following similarity transformation has been used by [50].

ξ = y

√
a(n+ 1)

2ν
x

n−1
2 , u = axnf ′(ξ),

v = −
√
νa(n+ 1)

2
x

n−1
2

(
f(ξ) +

(
n− 1

n+ 1

)
ξf ′(ξ)

)
,

θ(ξ) =
T − T∞
Tw − T∞

, φ(ξ) =
C − C∞
Cw − C∞

.


(3.6)

The detailed procedure for the conversion of (3.1)-(3.4) into the dimensionless

form has been discussed below.

∂u

∂x
=

∂

∂x
(af ′(ξ)xn)

= a
∂

∂x
(f ′(ξ)xn)

= a

(
nxn−1f ′(ξ) + xnf ′′(ξ)

∂ξ

∂x

)
= a

(
nxn−1f ′(ξ) + xnf ′′(ξ)y

√
a(n+ 1)

2ν

(
n− 1

2

)
x

n−3
2

)
= a

(
nxn−1f ′(ξ) + xn−1f ′′ξ

(
n− 1

2

))
= axn−1

(
nf ′(ξ) + ξf ′′(ξ)

(
n− 1

2

))
. (3.7)

∂v

∂y
=

∂

∂y

[
−x

n−1
2

√
(n+ 1)νa

2

(
f(ξ) +

(
n− 1

n+ 1

)
ξf ′(ξ)

)]

= −x
n−1
2

√
(n+ 1)νa

2

[
f ′(ξ)

∂ξ

∂y
+

(
n− 1

n+ 1

)
ξf ′′(ξ)

∂ξ

∂y
+

(
n− 1

n+ 1

)
f ′(ξ)

∂ξ

∂y

]

= −x
n−1
2

√
(n+ 1)νa

2

[
f ′(ξ) +

(
n− 1

n+ 1

)
ξf ′′(ξ)

]√
(n+ 1)a

2ν
x

n−1
2

− x
n−1
2

√
(n+ 1)νa

2

((
n− 1

n+ 1

)
f ′(ξ)

)√
(n+ 1)a

2ν
x

n−1
2

= −a
2
xn−1(n+ 1)

(
f ′(ξ) +

(
n− 1

n+ 1

)
ξf ′′(ξ) +

(
n− 1

n+ 1

)
f ′(ξ)

)
= −a

2
xn−1 (f ′(ξ)(n+ 1) + (n− 1)ξf ′′(ξ) + (n− 1)f ′(ξ))

= −a
2
xn−1f ′(ξ)(n+ 1 + n− 1)− a

2
xn−1(n− 1)ξf ′′(ξ)

= −a
2
xn−12nf ′(ξ)− a

2
xn−1(n− 1)ξf ′′(ξ)
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= −axn−1nf ′(ξ)− axn−1
(n− 1

2

)
ξf ′′(ξ). (3.8)

Equation (3.1) is easily satisfied by using (3.6) and (3.7), as follows

∂u

∂x
+
∂v

∂y
= axn−1nf ′(ξ) + axn−1

(n− 1

2

)
ξf ′′(ξ)− axn−1nf ′(ξ)

− axn−1
(n− 1

2

)
ξf ′′(ξ)

⇒ ∂u

∂x
+
∂v

∂y
= 0. (3.9)

Now, for the momentum equation (3.2) the following derivatives are required.

∂u

∂y
=

∂

∂y
(axnf ′(ξ))

= a
∂

∂y
(xnf ′(ξ))

= axnf ′′(ξ)
∂ξ

∂y

∂u

∂y
= axnf ′′(ξ)

√
a(n+ 1)

2ν
x

n−1
2 . (3.10)

∂2u

∂y2
= axnf ′′′(ξ)

√
a(n+ 1)

2ν
x

n−1
2
∂ξ

∂y

= af ′′′(ξ)

√
a(n+ 1)

2ν
x

n−1
2 xn

√
a(n+ 1)

2ν
x

n−1
2

∂2u

∂y2
= a2x2n−1f ′′′(ξ)

(n+ 1

2ν

)
. (3.11)

u
∂u

∂x
= axnf ′(ξ)

(
axn−1nf ′(ξ) + axn−1

(
n− 1

2

)
ξf ′′(ξ)

)
= a2x2n−1nf ′2(ξ) + a2x2n−1

(n− 1

2

)
ξf ′(ξ)f ′′(ξ). (3.12)

v
∂u

∂y
= −

√
aν(n+ 1)

2
x

n−1
2

(
ξf ′(ξ)

(
n− 1

n+ 1

)
+ f(ξ)

)[
axnf ′′(ξ)

√
a(n+ 1)

2
x

n−1
2

]
= −

√
aν(n+ 1)

2
x

n−1
2 f ′(ξ)ξ

(
n− 1

n+ 1

)
axnf ′′(ξ)

√
a(n+ 1)

2ν
x

n−1
2

−
√
aν(n+ 1)

2
x

n−1
2 f(ξ)axnf ′′(ξ)

√
a(n+ 1)

2ν
x

n−1
2

= −a
2(n+ 1)

2
x2n−1f ′(ξ)f ′′(ξ)ξ

(
n− 1

n+ 1

)
− a2(n+ 1)

2
x2n−1f(η)f ′′(ξ). (3.13)
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Using (3.12) and (3.13) in the left side of (3.2), it becomes

u
∂u

∂x
+ v

∂u

∂y
= a2x2n−1nf ′2(ξ) + a2x2n−1

(
n− 1

2

)
ξf ′(ξ)f ′′(ξ)

− a2(n+ 1)

2
x2n−1f ′(ξ)f ′′(ξ)ξ

(n− 1

n+ 1

)
− a2(n+ 1)

2
x2n−1f(ξ)f ′′(ξ)

= a2x2a−1nf ′2(ξ) + a2x2n−1
(
n− 1

2

)
ξf ′(ξ)f ′′(ξ)

− a2(n+ 1)

2
x2n−1ξf ′(ξ)f ′′(ξ)

(
n− 1

n+ 1

)
− a2(n+ 1)

2
x2n−1f(ξ)f ′′(ξ)

= a2x2n−1nf ′2(ξ)− a2(n+ 1)

2
x2n−1f(ξ)f ′′(ξ)

= a2x2n−1
(
nf ′2(ξ)−

(
n+ 1

2

)
f(ξ)f ′′(ξ)

)
. (3.14)

Using (3.11), in the right side of (3.2), we get

ν
∂2u

∂y2
− σB2(x)

ρ
u = νa2x2n−1f ′′′(ξ)

(
n+ 1

2ν

)
− σB2

0ax
3n−1

ρ
f ′(ξ)

= νa2x2n−1f ′′′(ξ)
n+ 1

2ν
− σB2

0ax
3n−1

ρ
f ′(ξ). (3.15)

Comparing (3.14) and (3.15), the dimensionless form of (3.2) can be written as:

a2x2n−1
[
nf ′2(ξ)− n+ 1

2
f(ξ)f ′′(ξ)

]
= νa2x2n−1f ′′′(ξ)

[n+ 1

2ν

]
− σB2

0ax
3n−1

ρ
f ′(ξ).

⇒ a2x2n−1
[
nf ′2(ξ)− n+ 1

2
f(ξ)f ′′(ξ)

]
= a2x2n−1f ′′′(ξ)

[n+ 1

2

]
− σB2ax3n−1

ρ
f ′(ξ).

⇒ nf ′2(ξ)− n+ 1

2
f(ξ)f ′′(ξ) = f ′′′(ξ)

[n+ 1

2

]
− σB2xn

ρa
f ′(ξ).

⇒
(

2n

n+ 1

)
f ′2(ξ)− f(ξ)f ′′(ξ) = f ′′′(ξ)− 2σB2xn

ρa(n+ 1)
f ′(ξ).

⇒ f ′′′(ξ) + f(ξ)f ′′(ξ)−
(

2n

n+ 1

)
f ′2(ξ)−Mf ′(ξ) = 0. (3.16)

Now, for the conversion of energy equation (3.3), the following derivatives are

required.

θ(ξ) =
T − T∞
Tw − T∞

.

⇒ T = θ(ξ)(Tw − T∞) + T∞.
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∂ξ

∂x
= y

√
a(n+ 1)

2ν
x

n−3
2

(
n− 1

2

)
∂T

∂x
= (Tw − T∞)θ′(ξ)

∂ξ

∂x

= (Tw − T∞)y

√
a(n+ 1)

2ν
x

n−3
2

(
n− 1

2

)
θ′(ξ). (3.17)

∂ξ

∂y
=

√
a(n+ 1)

2ν
x

n−1
2

∂T

∂y
= (Tw − T∞)θ′(ξ)

∂ξ

∂y

= (Tw − T∞)

√
a(n+ 1)

2ν
x

n−1
2 θ′(ξ). (3.18)(

∂T

∂y

)2

=

(
(Tw − T∞)

√
a(n+ 1)

2ν
x

n−1
2 θ′(ξ)

)2

= xn−1
(n+ 1)a

2ν
(Tw − T∞)2θ′2(ξ). (3.19)

∂2T

∂y2
= (Tw − T∞)

√
a(n+ 1)

2ν
x

n−1
2 θ′′(ξ)

∂ξ

∂y

= (Tw − T∞)

(
a(n+ 1)

2ν

)
xn−1θ′′(ξ). (3.20)

qr = −4σ∗

3k∗
∂T 4

∂y

= −4σ∗

3k∗
∂

∂y
(4T 3

∞T − 3T 4
∞)

= −4σ∗

3k∗
∂

∂y
(4T 3

∞T )

= −4σ∗

3k∗
4T 3
∞
∂T

∂y

= −16σ∗

3k∗
T 3
∞
∂T

∂y

⇒ ∂qr
∂y

= −16σ∗

3k∗
T 3
∞
∂2T

∂y2

= −16σ∗

3k∗
T 3
∞x

n−1a(n+ 1)

2ν
(Tw − T∞)θ′′(ξ). (3.21)

(T − T∞) = (Tw − T∞)θ(ξ). (3.22)

∂C

∂y
= (Cw − C∞)φ′(ξ)

∂ξ

∂y

= x
n−1
2

√
a(n+ 1)

2ν
(Cw − C∞)φ′(ξ). (3.23)



MHD Nanofluid Flow 23

Using (3.17) and (3.18) in the left side of (3.3), we get

u
∂T

∂x
+ v

∂T

∂y
= axnf ′(ξ)

[
(Tw − T∞)

(
n− 1

2x

)
ξθ′(ξ)

]
+

[
− x

n−1
2

√
a(n+ 1)

2ν[(
n− 1

n+ 1

)
ξf ′(ξ) + f(ξ)

]][
(Tw − T∞)

√
a(n+ 1)

2ν
x

n−1
2 θ′(ξ)

]

= axn−1(Tw − T∞)

(
n− 1

2

)
ξf ′(ξ)θ′(ξ)

−
(

(n+ 1)a

2

)
xn−1(Tw − T∞)

(
n− 1

n+ 1

)
ξθ′(ξ)f ′(ξ)

−
(
a(n+ 1)

2

)
xn−1(Tw − T∞)f(ξ)θ′(ξ)

= axn−1
(
n− 1

2

)
(Tw − T∞)ξf ′(ξ)θ′(ξ)

− axn−1
(
n− 1

2

)
(Tw − T∞)ξf ′(ξ)θ′(ξ)

− axn−1
(
n+ 1

2

)
(Tw − T∞)f(ξ)θ′(ξ)

= −axn−1
(
n+ 1

2

)
(Tw − T∞)f(ξ)θ′(ξ). (3.24)

Using (3.19)-(3.23) in the right side of (3.3), we get

α
∂2T

∂y2
+ τ
[
DB

∂C

∂y

∂T

∂x
+
DT

T∞

(
∂T

∂y

)2 ]
− 1

(ρC)f

∂qr
∂y

+
q

(ρC)f
(T − T∞)

= α

[
xn−1

[
a(n+ 1)

2ν

]
(Tw − T∞)θ′′(ξ)

]
+ τ

[
DT

T∞
xn−1

(n+ 1)a

2ν
(Tw − T∞)2θ′2(ξ)

]

+ τ

(
DB

[
x

n−1
2

√
(n+ 1)a

2ν
(Tw − T∞)θ′(ξ)

][
x

n−1
2

√
(n+ 1)a

2ν
(Cw − C∞)φ′(ξ)

])

+
1

(ρC)f

[16σ∗T 3
∞

3k∗
(Tw − T∞)xn−1

[a(n+ 1)

2ν

]
θ′′(ξ)

]
+

Q0

(ρC)f
(Tw − T∞)θ(ξ).

(3.25)

With the help of (3.24) and (3.25), the dimensionless form of (3.3), is obtained as

follows.

− axn−1
[(n+ 1

2

)
(Tw − T∞)f(ξ)θ′(ξ)

]
= α

[
xn−1

(
a(n+ 1)

2ν

)
(Tw − T∞)θ′′(ξ)

]
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+ τDBx
n−1
(

(n+ 1)a

2ν

)
(Tw − T∞)(Cw − C∞)θ′(ξ)φ′(ξ)

+ τ
DT

T∞
xn−1

(
(n+ 1)a

2ν

)
(Tw − T∞)2θ′2(ξ) +

Q0

(ρC)n
(Tw − T∞)θ(ξ)

+
1

(ρC)fν

(
16σ∗T 3

∞
3k∗

(Tw − T∞)xn−1
[a(n+ 1)

2ν

])
θ′′(ξ).

⇒ − f(ξ)θ′(ξ) =
α

ν
θ′′(ξ) +Nbθ′(ξ)φ′(ξ) +Ntθ′2(ξ)

+
1

(ρC)fν

(
16σ∗T 3

∞
3k∗

)
θ′′(ξ) +

Q0

(ρC)naxn−1

(
2

n+ 1

)
θ(ξ).

⇒ − f(ξ)θ′(ξ) =
α

ν
θ′′(ξ) +Nbθ′(ξ)φ′(ξ) +Ntθ′2(ξ)

+
k

(ρC)fν

(
16σ∗T 3

∞
3kk∗

)
θ′′(ξ) +

Q0

(ρC)naxn−1

(
2

n+ 1

)
θ(ξ).

⇒ α

ν

(
1 +

16σ∗T∞
3kk∗

)
θ′′(ξ) + f(ξ)θ′(ξ) +Nbθ′(ξ)π′(ξ) +Ntθ′2(ξ) +Qθ(ξ) = 0.

⇒ 1

Pr

(
1 +

4

3
R
)
θ′′(ξ) + f(ξ)θ′(ξ) +Nbθ′(ξ)φ′(ξ) +Ntθ′2(ξ) +Qθ(ξ) = 0.

(3.26)

Now, we include below the procedure for the conversion of equation (3.4) into the

dimensionless form.

φ(ξ) =
C − C∞
Cw − C∞

⇒ C = (Cw − C∞)φ(ξ) + C∞

⇒ ∂C

∂x
= (Cw − C∞)φ′(ξ)

∂ξ

∂x

=
(n− 1

2

)
x

n−3
2 y

√
a(n+ 1)

2ν
(Cw − C∞)φ′(ξ). (3.27)

∂C

∂y
= (Cw − C∞)φ′(ξ)

∂ξ

∂y

= x
n−1
2

√
a(n+ 1)

2ν
(Cw − C∞)φ′(ξ). (3.28)

∂2C

∂y2
= x

n−1
2

√
a(n+ 1)

2ν
(Cw − C∞)φ′′(ξ)

∂ξ

∂y

= x
n−1
2

√
a(n+ 1)

2ν
(Cw − C∞)φ′′(ξ)

(
x

n−1
2

√
a(n+ 1)

2ν

)
= xn−1

(√a(n+ 1)

2ν

)2
(Cw − C∞)φ′′(ξ)
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= xn−1
a(n+ 1)

2ν
(Cw − C∞)φ′′(ξ). (3.29)

∂2T

∂y2
= xn−1

a(n+ 1)

2ν
(Tw − T∞)θ′′(ξ). (3.30)

Using (3.27) and (3.28) in left hand side of (3.4),

u
∂C

∂x
+ v

∂C

∂y
= axnf ′(ξ)

((
n− 1

2

)
x

n−3
2 y

√
a(n+ 1)

2ν
(Cw − C∞)φ′(ξ)

)

+
(n− 1

2
xn−1yaf ′(ξ)− x

n−1
2
n+ 1

2

√
2νa

n+ 1
f(ξ)

)
x

n−1
2

√
a(n+ 1)

2ν
(Cw − C∞)φ′(ξ)

= ax
3n−3

2 y

(
n− 1

2

)√
a(n+ 1)

2ν
(Cw − C∞)f ′(ξ)φ′(ξ)

− x
3n−3

2 y

(
n− 1

2

)√
a(n+ 1)

2ν
(Cw − C∞)f ′(ξ)φ′(ξ)

− axn−1
(
n+ 1

2

)
(Cw − C∞)f(ξ)φ′(ξ)

= −axn−1
(
n+ 1

2

)
(Cw − C∞)f(ξ)φ′(ξ). (3.31)

Using (3.29) and (3.30) in the right hand side of (3.4),

DB
∂2C

∂y2
+
DT

T∞

∂2T

∂y2
= DBx

n−1
(a(n+ 1)

2ν

)
(Cw − C∞)φ′′(ξ)

+
DT

T∞
xn−1

(a(n+ 1)

2ν

)
(Tw − T∞)θ′′(ξ). (3.32)

Comparing (3.31) and (3.32)

− axn−1
(n+ 1

2

)
(Cw − C∞)f(ξ)φ′(ξ) = DBx

n−1
(a(n+ 1)

2ν

)
(Cw − C∞)φ′′(ξ)

+
DT

T∞
xn−1

(a(n+ 1)

2ν

)
(Tw − T∞)θ′′(ξ).

⇒ − ν

DB

f(ξ)φ′(ξ) = φ′′(ξ) +
DT (Tw − T∞)

T∞DB(Cw − C∞)
θ′′(ξ).

⇒ φ′′(ξ) + Lef(ξ)φ′(ξ) +
DT τ(Tw − T∞)ν

T∞νDBτ(Cw − C∞)
θ′′(ξ).

⇒ φ′′(ξ) + Lef(ξ)φ′(ξ) +
Nt

Nb
θ′′(ξ) = 0. (3.33)
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The corresponding BCs are transformed into the non-dimensional form through

the following procedure.

u = Uw(x) = axn, at y = 0.

⇒ u = af ′(ξ)xn.

⇒ axnf ′(ξ) = axn

⇒ f ′(ξ) = 1, at ξ = 0.

⇒ f ′(0) = 1.

v = vw(x), at y = 0.

⇒ − x
n−1
2

√
(n+ 1)νa

2

(
f(ξ) + ξf ′(ξ)

(
n− 1

n+ 1

))
= vw(x), at ξ = 0.

⇒ − x
n−1
2

√
(n+ 1)νa

2
f(ξ) = vw(x), at ξ = 0.

⇒ f(ξ) = − vw(x)
√

2

x
n−1
2
√
aν(n+ 1)

,

⇒ f(0) = S.

T = Tw, at y = 0.

⇒ θ(ξ)(Tw − T∞) + T∞ = Tw,

⇒ θ(ξ)(Tw − T∞) = (Tw − T∞),

⇒ θ(ξ) = 1, at ξ = 0.

⇒ θ(0) = 1.

C = Cw, at y = 0.

⇒ φ(ξ)(Cw − C∞) + C∞ = Cw,

⇒ φ(ξ)(Cw − C∞) = (Cw − C∞),

⇒ φ(ξ) = 1, at ξ = 0.

⇒ φ(0) = 1.

u→ (0), as y →∞.

⇒ af ′(ξ)xn → (0),

⇒ axnf ′(ξ)→ (0),



MHD Nanofluid Flow 27

⇒ f ′(ξ)→ (0), as ξ →∞.

⇒ f ′(∞)→ 0.

T → T∞, as y →∞.

⇒ θ(ξ)(Tw − T∞) + T∞ → T∞,

⇒ θ(ξ)(Tw − T∞)→ 0, as ξ →∞.

⇒ θ(ξ)→ 0, as ξ →∞.

⇒ θ(∞)→ 0.

C → C∞, as y →∞.

⇒ φ(ξ)(Cw − C∞) + C∞ → C∞,

⇒ φ(ξ)(Cw − C∞)→ 0,

⇒ φ(ξ)→ 0, as ξ →∞.

⇒ φ(∞)→ 0.

The governing model’s ultimate dimensionless form is

f ′′′(ξ) + f(ξ)f ′′(ξ)−

(
2n

n+ 1

)
f ′2(ξ)−Mf ′(ξ) = 0. (3.34)

1

Pr

(
1 +

4

3
R

)
+ f(ξ)θ′(ξ) +Nbθ′(ξ)φ′(ξ) +Ntθ′2(ξ) +Qθ(ξ) = 0. (3.35)

φ′′(ξ) + Lef(ξ)φ′(ξ) +
Nt

Nb
θ′′(ξ) = 0. (3.36)

The associated BCs (3.5) in the dimensionless form are,

f(0) = S, f ′(0) = 1, θ(0) = 1, φ(0) = 1.

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0.

 (3.37)

Different dimensionless parameters used in equations (3.34) and (3.36) are formu-

lated as follows.

M =
2σB2

0x
n

ρa(n+ 1)
, Le =

ν

DB

R =
4σ∗T 3

∞
kk∗

, P r =
ν

α
,
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S = − vw(x)√
aν(n+ 1)

√
2x

n−1
2 , Q =

Q0

(n+ 1)ν(ρc)f
,

Nb =
(ρc)pDB(Cw − C∞)

(ρc)fν
, Nt =

(ρc)pDT (Tw − T∞)

(ρc)fT∞ν
.

The skin friction coefficient, is given as follows.

Cf =
τw

ρU2
w(x)

∣∣∣∣∣
y=0

. (3.38)

To achive the dimensionless form of Cf , the following steps will be helpful.

where Re denotes the local Reynolds number defined as Re = xux(x)
ν

Local Nusselt number is defined as follow.

Nux =
xqw

k(Tw − T∞)
. (3.39)
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To achieve the dimensionless form of Nux, the following steps will be helpful.

qw =

(
−
(
k +

16σ∗T 3
∞

3k∗

)(
∂T

∂y

))
y=0

. (3.40)

Nux = −
x
(
k + 16σ∗T 3

∞
3k∗

)(
∂T
∂y

)
y=0

k(Tw − T∞)

= −
x
(
k + 16σ∗T 3

∞
3k∗

)
k(Tw − T∞)

(
∂T

∂y

)
y=0

= −
x
(
k + 16σ∗T 3

∞
3k∗

)
k(Tw − T∞)

(
(n+ 1)a

2ν

) 1
2

x
n−1
2 (Tw − T∞)θ′(ξ)

∣∣∣∣∣
ξ=0

= −
(

1 +
4

3
R

)√
a(n+ 1)

2ν
x

n+1
2 θ′(0)

= −

(
1 +

4

3
R

)√
n+ 1

2
θ′(0)

√
axn+1

ν
,

= −
(

1 +
4

3
R

)√
n+ 1

2
θ′(0)Re

1
2
x

= −Re
1
2
x

(
1 +

4

3
R

)√
n+ 1

2
θ′(0)

⇒ Re
−1
2
x Nux = −

(
1 +

4

3
R

)√
n+ 1

2
θ′(0). (3.41)

The local Sherwood number is defined as

Shx =
xqm

DB(Cw − C∞)
. (3.42)

To achieve the dimensionless form of Shx, the following step will be helpful.

qm = −DB

(
∂C

∂y

)
y=0

. (3.43)

Shx = − xDB

DB(Cw − C∞)

(
∂C

∂y

)
y=0

= − x

(Cw − C∞)
x

n−1
2

√
a(n+ 1)

2ν
(Cw − C∞)φ′(ξ)

∣∣∣∣∣
ξ=0
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= −x
n+1
2

√
a(n+ 1)

2ν
φ′(0)

= −
√
axn+1

ν

(
n+ 1

2

) 1
2

φ′(0)

= −Re
1
2
x

(
n+ 1

2

) 1
2

φ′(0)

⇒ Shx

Re
1
2
x

= −
√
n+ 1

2
φ′(0)

⇒ Re
−1
2
x Shx = −

√
n+ 1

2
φ′(0). (3.44)

3.3 Solution Methodology

The ordinary differential equation (3.34) has been solved using the shooting method.

The domain of original problem is [0,∞) which is unbounded. As numerical com-

putation cannot be performed on unbounded domain so we will consider the [0, ξ∞]

as the domain where ξ∞ is a psoitive real number. The notations below has been

taken into consideration.

f = Y1, f ′ = Y ′1 = Y2, f ′′ = Y ′′1 = Y ′2 = Y3, f ′′′ = Y ′3 .

Thus, the momentum equation is transformed into a first order ODEs system.

Y ′1 = Y2, Y1(0) = 0.

Y ′2 = Y3, Y2(0) = 1.

Y ′3 =

(
2n

n+ 1

)
Y 2
2 − Y1Y3 +MY2, Y3(0) = h.

The Runge-Kutta 4 method will be used to numerically solve the above initial

value problem. The missing condition h should be selected as:

Y2(ξ∞, h) = 0.
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Newton’s method will be used to find h. This method has the following iterative

scheme.

hn+1 = hn −
Y2(ξ∞, hn)

∂
∂h

(Y2(ξ∞, hn))
.

We further introduce the following notations,

∂Y1
∂h

= Y4,
∂Y2
∂h

= Y5,
∂Y3
∂h

= Y6.

As a result of these new notations, the Newton’s iterative scheme gets the form

hn+1 = hn −
Y2(ξ∞, hn)

Y5(ξ∞, hn)
.

Now differentiating the system of three first order ODEs with respect to h, we get

another system of ODEs, as follows.

Y ′4 = Y5, Y4(0) = 0.

Y ′5 = Y6, Y5(0) = 0.

Y ′6 =

(
4n

n+ 1

)
Y2Y5 − Y4Y3 − Y1Y6 +MY5, Y6(0) = 1.

The stopping criteria for the Newton’s technique is set as:

| Y2(ξ∞, h) |< ε,

where ε > 0 is an arbitrarily small positive number. From now onward ε has been

taken as 10−10.

The shooting method will be used to numerically solve equation (3.35) and (3.36)

while assuming that f is a known function. For this we use the notations below:

θ = Z1, θ′ = Z ′1 = Z2, θ′′ = Z ′2.

φ = Z3, φ′ = Z ′3 = Z4, φ′′ = Z ′4, A1 =

(
1 +

4

3
R

)
.
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As a result, the energy equations (3.35) and (3.36) are transformed into the first

order ODE system below.

Z ′1 = Z2, Z1(0) = 1.

Z ′2 = −Pr
A1

[
fZ2 +NbZ2Z4 +NtZ2

2 +QZ1

]
, Z2(0) = l.

Z ′3 = Z4, Z3(0) = 1.

Z ′4 = −LefZ4 +
Nt

Nb

[
Pr

A1

[
fZ2 +NbZ2Z4 +NtZ2

2 +QZ1

]]
, Z4(0) = m.

The RK-4 method has been taken into consideration for solving the above initial

value problem. The missing conditions are to be chosen for the above system of

equations in such a way that.

Z1(ξ∞, l,m) = 0, Z3(ξ∞, l,m) = 0.

To solve the above algebaric equations, we apply the Newton’s method which has

the following scheme.

 l
m


(n+1)

=

 l
m


(n)

−

∂Z1

∂l
∂Z1

∂m

∂Z3

∂l
∂Z3

∂m

−1
(n)

Z1

Z3


(n)

Now, introduce the following notations,

∂Z1

∂l
= Z5,

∂Z2

∂l
= Z6,

∂Z3

∂l
= Z7,

∂Z4

∂l
= Z8.

∂Z1

∂m
= Z9,

∂Z2

∂m
= Z10,

∂Z3

∂m
= Z11,

∂Z4

∂m
= Z12.

As the result of these new notations, the Newton’s iterative scheme gets the form.

 l
m


(n+1)

=

 l
m


(n)

−

Z5 Z9

Z7 Z11

−1
(n)

Z1

Z3


(n)
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Now differentiating the system of four first order ODEs with respect to l, and m

we get another system of ODEs, as follows.

Z ′5 = Z6, Z5(0) = 0

Z ′6 = −Pr
A1

[
fZ6 +Nb(Z6Z4 + Z2Z8) + 2NtZ2Z6 +QZ5

]
, Z6(0) = 1.

Z ′7 = Z8, Z7(0) = 0.

Z ′8 = −LefZ8 +
Nt

Nb

[
Pr

A1

[
fZ6 +Nb(Z6Z4 + Z2Z8) + 2NtZ2Z6 +QZ5]

]
,

Z8(0) = 0.

Z ′9 = Z10, Z9(0) = 0.

Z ′10 = −Pr
A1

[
fZ10 +Nb(Z10Z4 + Z2Z12) + 2NtZ2Z10 +QZ9

]
, Z10(0) = 0.

Z ′11 = Z12, Z11(0) = 0.

Z ′12 = −LefZ12 +
Nt

Nb

[
Pr

A1

[
fZ10 +Nb(Z10Z4 + Z2Z12) + 2NtZ2Z10 +QZ9

]]
,

Z12(0) = 1.

The stopping criteria for the Newton’s method is set as.

max{|Z1(ξ∞, l
n,mn)|, |Z3(ξ∞, l

n,mn)|} < ε.

3.4 Representation of Graphs and Tables

A thorough discussion on the numerical solution and graphical representation has

been conducted which contains the impact of various dimensionless parameters on

(Rex)
1
2Cf and (Rex)

−1
2 Nux. Table 3.1 explains the impact of nonlinear stretch-

ing parameter n, magnetic parameter M and wall transpiration parameter S on

(Rex)
1
2Cf . For the rising values of magnetic parameter, (Rex)

1
2Cf decreases. Ta-

ble 3.1 shows the interval If where from the missing condition can be chosen. It
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is remarkable that the interval mentioned offers a considerable flexibility for the

choice of the initial guess. In Table 3.2, the effect of significant parameters on

(Rex)
−1
2 Nux and (Rex)

−1
2 Shx has been discussed. The rising pattern is found in

(Rex)
−1
2 Nux due to increasing values of R. A decrement is noticed in (Rex)

−1
2 Shx

by increasing the value of Nb and Nt.

The missing initial conditions for θ(ξ) and φ(ξ) can be chosen from [−1.6 − 0.8].

It is remarkable that the interval mentioned offers a considerable flexibility for the

choice of the initial guess.

In Figure 3.2, the velocity profile is shown to drop as the magnetic parameter M

is increased. Figure 3.3 shows the impact of M in the temperature profile. Tem-

perature distribution is increased by increasing value of M .

The impact of parameter n on f ′(ξ) and θ(ξ) is depicted in Figures 3.4 and 3.5.

By increasing the value of n, the velocity profile decreases but an increment in

the temperature distribution due to the effect of S depicted in Figures 3.6 and 3.7

show by increasing the value of S, the velocity profile and temperature distribution

decrease.

A significant increase in θ(ξ) is seen on rising the values of radiation parameter as

depicted in Figure 3.8. Figure 3.9 elucidates the effect of Pr on θ(ξ). By rising

the value of Pr, temperature profile is decreased.

The contrasts between the heat generation parameter Q and the temperature pro-

file are shown in Figure 3.10. It can be seen that by rising the value of Q, the

temperature profile θ(ξ) also increases.

Figures 3.11 and 3.12 show the effect of the Brownian parameter Nb, on the tem-

perature and concenteration profiles. Increasing value of Nb is observed to cause

an increment in the temperature profile θ(ξ) but a decrease in the concentration

distribution φ(ξ).

Figures 3.13 shows the effect of Nt on the temperature profiles by increasing the

value of Nt it is observed cause an increment in the temperature θ(ξ).

Figure 3.14 shows impact of Nt on the concentration profile φ(ξ). Increasing the

value of Nt concenteration profile also increases.

Figure 3.15 shows the impact of Lewis numbers Le on the concentration profile
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φ(ξ). The increasing value of Le shows to decrease the concentration profile.

Table 3.1: Results of (Rex)
1
2Cf for various parameters

n M S -(Rex)
1
2Cf If

1.5 0.5 0.5 1.547729 [-1.6, -0.8]

0.0 1.234501 [-1.6, -0.8]

0.5 1.416913 [-1.3, -1.0]

0.7 1.456598 [-1.7, 1.5]

0.0 1.336685 [-1.6, 2.6]

0.25 1.446971 [-1.4, -0.2]

0.75 1.641091 [-1.5, -0.5]

1.0 1.728496 [-1.7, -1.0]

-0.2 1.181757 [-1.2, -0.9]

0.0 1.276459 [-1.3, -0.9]

0.2 1.379077 [-1.4, -0.9]

1.0 1.865900 [-2.0, -0.5]
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Table 3.2: Results of −(Rex)
−1
2 Nux and −(Rex)

−1
2 Shx some fixed parameters

n = 1.5, S = 0.5 and M = 0.5

R Pr Nt Nb Q Le −(Rex)
−1
2 Nux −(Rex)

−1
2 Shx

0.1 2.0 0.2 0.2 0.1 2.0 1.354570 -0.009598

0.0 1.315278 -0.119363

0.5 1.468285 0.273916

0.7 1.551847 0.467323

1.0 0.772618 0.452331

1.5 1.080688 -0.208865

1.75 1.221101 0.097259

0.0 1.477258 1.004875

0.1 1.414702 0.473252

0.15 1.384336 0.225925

0.5 1.056555 0.697572

1.0 0.658523 0.916055

2.0 0.191635 0.997066

0.0 1.478718 -0.111882

0.2 1.214521 0.105316

0.5 0.552410 0.641336

1.0 1.464162 -0.594562

3.0 1.287162 0.494303

5.0 1.211202 1.355628
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Figure 3.2: Change f ′(ξ) for M .
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Figure 3.3: Change in θ(ξ) for M .
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Figure 3.4: Change in f ′(ξ) for n.
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Figure 3.5: Change in θ(ξ) for n.
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Figure 3.6: Change in f ′(ξ) for S.
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Figure 3.7: Change in θ(ξ) for S.
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Figure 3.8: Change in θ(ξ) for R.
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Figure 3.9: Change in θ(ξ) for Pr.
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Figure 3.10: Change in θ(ξ) for Q.
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Figure 3.11: Change in θ(ξ) for Nb.
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Figure 3.12: Change in φ(ξ) for Nb.
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Figure 3.13: Change in θ(ξ) for Nt.
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Figure 3.14: Change in φ(ξ) for Nt.
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Figure 3.15: Change in φ(ξ) for Le.



Chapter 4

Cattaneo-Christov Double

Diffusion, MHD and Thermal

Radiation Effects on a Nanofluid

Flow

4.1 Introduction

This chapter is an extension of the research article [50] by considering Cattaneo-

Christov double diffusion, Brownian motion and Soret number. The set of equa-

tions for momentum, energy, and concenteration is attained by utilizing the bound-

ary layer approximation.The governing nonlinear PDEs are converted into a sys-

tem of dimensionless ODEs by utilizing the similarity transfomations. The nu-

merical solution of ODEs is obtained by applying numerical method known as

the shooting method. At the end of this chapter, the final results are discussed

for significant parameters effecting velocity profile f ′(ξ), temperature distribution

θ(ξ) and concenterartion distribution φ(ξ) which are shown in tables and graphs.

The impact of some important physical parameters on Skin friction, Local Nusselt

number and Local Sherwood number is also analyzed.

44
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4.2 Mathematical Modeling

It is aimed to analyse a 2D, MHD flow of nanofluid past a nonlinear stretching

sheet. The flow occupied the space y > 0. Magnetic field of strength B is applied

through the horizantal axis. Furthermore, the direction of flow is along x-axis

and y-axis is normal to the sheet. Energy transport analaysis is also carrieds

out in the presence of thermal radiation, heat generation and Cattaneo-Christov

double diffusion. Moreover, the concentration of flow is discussed with the help of

Cattaneo-Christov.

By considering the above assumptions, the goverining PDEs are.

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

(
∂2u

∂y2

)
− σB2(x)

ρ
u, (4.2)

u
∂T

∂x
+ v

∂T

∂y
+ λT

[
u
∂u

∂x

∂T

∂x
+ v

∂v

∂y

∂T

∂y
+ u

∂v

∂x

∂T

∂y
+ v

∂u

∂y

∂T

∂x
+ 2uv

∂2T

∂x∂y

+ u2
∂2T

∂x2
+ v2

∂2T

∂y2

]
= α

(
∂2T

∂y2

)
+ τ

(
DB

∂C

∂y

∂T

∂x
+
DT

T∞

(
∂T

∂y

)2
)

− 1

(ρC)f

(
∂qr
∂y

)
+

Q0

(ρC)f
(T − T∞), (4.3)

u
∂C

∂x
+ v

∂C

∂y
+ λC

[
u
∂u

∂x

∂C

∂x
+ v

∂v

∂y

∂C

∂y
+ u

∂v

∂x

∂C

∂y
+ v

∂u

∂y

∂C

∂x
+ 2uv

∂2C

∂x∂y

+ u2
∂2C

∂x2
+ v2

∂2C

∂y2

]
= DB

∂2C

∂y2
+

(
DT

T∞

)
∂2T

∂y2
+Dm

∂2C

∂y2
+
DmKT

Tm

∂2T

∂y2
. (4.4)

The associated BCs have been taken as.

u = Uw(x) = axn, v = vw(x), T = Tw, C = Cw at y = 0.

u→ 0, T → T∞, C → C∞ as y →∞.

 (4.5)
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Following similarity transformation has been used to convert PDEs (4.1)-(4.4) into

system of ODEs.

ξ = y

√
a(n+ 1)

2ν
x

n−1
2 , u = axnf ′(ξ),

v = −xn−1ay
(
n− 1

2

)
f ′(ξ)− x

n−1
2

(
n+ 1

2

)√
2νa

n+ 1
f(ξ),

θ(ξ) =
T − T∞
Tw − T∞

, φ(ξ) =
C − C∞
Cw − C∞

,


(4.6)

The dimensionless velocity, temperature and concentrationwhere are f , θ and φ

respectively, where ξ stand for the similarity variable.

The detailed procedure for the conversion of (4.1) has been discussed in chapter

3.

∂u

∂x
+
∂v

∂y
= 0. (4.7)

The complete procedure for the conversion of (4.1) discussed in chapter 3.

f ′′′(ξ) + f(ξ)f ′′(ξ)−

(
2n

n+ 1

)
f ′2(ξ)−Mf ′(ξ) = 0. (4.8)

Now, we include below the procedure for the conversion of equation (4.3) into the

dimensionless form.

∂u

∂x
= ax

3n−3
2 y

(
n− 1

2

)√
(n+ 1)a

2ν
f ′′(ξ) + naxn−1f ′(ξ). (4.9)

∂u

∂y
= ax

3n−1
2

√
(n+ 1)a

2ν
f ′′(ξ). (4.10)

∂T

∂x
= x

n−3
2 y

(
n− 1

2

)√
(n+ 1)a

2ν
(Tw − T∞)θ′(ξ). (4.11)

∂2T

∂x2
= xn−3y2

(
n− 1

2

)2
a(n+ 1)

2ν
(Tw − T∞)θ′′(ξ)

+ x
n−5
2 y

(
n− 1

2

)(
n− 3

2

)√
(n+ 1)a

2ν
(Tw − T∞)θ′(ξ). (4.12)

∂T

∂y
= x

n−1
2

√
(n+ 1)a

2ν
(Tw − T∞)θ′(ξ). (4.13)
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∂2T

∂y2
= xn−1

a(n+ 1)

2ν
(Tw − T∞)θ′′(ξ). (4.14)

∂2T

∂x∂y
= x

n−3
2

(
n− 1

2

)√
(n+ 1)a

2ν
(Tw − T∞)θ′(ξ)

+ xn−2y

(
n− 1

2

)
(n+ 1)a

2ν
(Tw − T∞)θ′′(ξ). (4.15)

∂v

∂y
= −naxn−1f ′(ξ)− ax

3n−3
2 y

(
n− 1

2

)√
(n+ 1)a

2ν
f ′′(ξ). (4.16)

∂v

∂x
=

∂

∂x

[
−xn−1af ′(ξ)y

(
n− 1

2

)
−
√

2νa

n+ 1

(
n+ 1

2

)
x

n−1
2 f(ξ)

]
,

∂v

∂x
= −ax

3n−5
2 y2

(
n− 1

2

)2
√

(n+ 1)a

2ν
f ′′(ξ)− a(n− 1)xn−2y

(
n− 1

2

)
f ′(ξ)

− axn−2y
(
n− 1

2

)(
n+ 1

2

)
f ′(ξ)− x

n−3
2

(
n− 1

2

)(
n+ 1

2

)√
2νa

n+ 1
f(ξ).

(4.17)

u
∂u

∂x

∂T

∂x
= axnf ′(ξ)

(
ax

3n−3
2 y

(
n− 1

2

)√
(n+ 1)a

2ν
f ′′(ξ) + naxn−1f ′(ξ)

)
(
x

n−3
2 y

(
n− 1

2

)√
(n+ 1)a

2ν
(Tw − T∞)θ′(ξ)

)
,

u
∂u

∂x

∂T

∂x
= axnf ′(ξ)

(
ax2n−3y2

(
n− 1

2

)2
(n+ 1)a

2ν
f ′′(ξ)θ′(ξ)(Tw − T∞)

+ nax
2n−5

2 y

(
n− 1

2

)√
(n+ 1)a

2ν
f ′(ξ)θ′(ξ)(Tw − T∞)

)
,

u
∂u

∂x

∂T

∂x
= a2x3n−3y2

(
n− 1

2

)2(
(n+ 1)a

2ν

)
(Tw − T∞)f ′(ξ)f ′′(ξ)θ′(ξ)

+ na2x
5n−5

2 y

(
n− 1

2

)√
(n+ 1)a

2ν
(Tw − T∞)f ′2(ξ)θ′(ξ). (4.18)

v
∂v

∂y

∂T

∂y
=

(
− xn−1ay

(
n− 1

2

)
f ′(ξ)− x

n−1
2

(
n+ 1

2

)√
2νa

n+ 1
f(ξ)

)
(
− naxn−1f ′(ξ)− ax

3n−3
2 y

(
n− 1

2

)√
(n+ 1)a

2ν
f ′′(ξ)

)
(
x

n−1
2

√
(n+ 1)a

2ν
(Tw − T∞)θ′(ξ)

)
,

v
∂v

∂y

∂T

∂y
= na2x

5n−5
2 y

(
n− 1

2

)√
(n+ 1)a

2ν
(Tw − T∞)f ′2(ξ)θ′(ξ)

+ a2x3n−3y2
(
n− 1

2

)2(
(n+ 1)a

2ν

)
(Tw − T∞)f ′(ξ)f ′′(ξ)θ′(ξ)
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+ a2x
5n−5

2 y

(
n+ 1

2

)(
n− 1

2

)√
(n+ 1)a

2ν
(Tw − T∞)f(ξ)f ′′(ξ)θ′(ξ)

+ na2x2n−2
(
n+ 1

2

)
(Tw − T∞)f(η)f ′(ξ)θ′(ξ). (4.19)
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∂v

∂x

∂T
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= axnf ′(ξ)

[
− ax

3n−5
2 y2

(
n− 1

2

)2
√

(n+ 1)a

2ν
f ′′(ξ)

− (n− 1)xn−2ay

(
n− 1

2

)
f ′(ξ)− axn−2y

(
n− 1

2

)(
n+ 1

2
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f ′(ξ)
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2

(
n− 1

2

)(
n+ 1

2

)√
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n+ 1
f(ξ)

][
x

n−1
2

√
(n+ 1)a

2ν
(Tw − T∞)θ′(ξ)

]
,

u
∂v

∂x

∂T

∂y
= −a2x3n−3y2

(
n− 1

2

)2(
(n+ 1)a

2ν

)
(Tw − T∞)f ′(ξ)f ′′(ξ)θ′(ξ)

− (n− 1)a2x
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(
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2

)√
(n+ 1)a

2ν
(Tw − T∞)f ′2(ξ)θ′(ξ)

− a2x
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2

)(
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2
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(n+ 1)a
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2

)(
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2

)
(Tw − T∞)f(ξ)f ′(ξ)θ′(ξ). (4.20)
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∂u

∂y

∂T

∂x
=

(
−axn−1y

(
n− 1

2

)
f ′(ξ)− x

n−1
2

√
2νfa

n+ 1
f(ξ)

)(
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3n−1
2

√
2νa

n+ 1
f ′′(ξ)

)
(
x

n−3
2 y

(
n− 1

2

)
(Tw − T∞)θ′(ξ)

)
,

v
∂u

∂y

∂T

∂x
= −a2x3n−3y2

(
n− 1

2

)2(
(n+ 1)a

2ν

)
(Tw − T∞)f ′(ξ)f ′′(ξ)θ′(ξ

− a2x
5n−5
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(
n− 1

2

)(
n+ 1

2

)√
(n+ 1)a

2ν
(Tw − T∞)f(ξ)f ′′(ξ)θ′(ξ).

(4.21)

2uv
∂2T

∂x∂y
= 2axnf ′(ξ)

(
− xn−1ay

(
n− 1

2

)
f ′(ξ)− x

n−1
2

(
n+ 1

2

)√
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f(ξ)
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n− 1

2
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2
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)
,
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∂2T
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2
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2

(
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2
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(
x

n−3
2

√
(n+ 1)a
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2
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− 2a2y2x3n−3
(
n− 1

2
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(n+ 1)a
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2

)2
√

(n+ 1)a
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(Tw − T∞)f ′2(ξ)θ′(ξ). (4.22)
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∂2T

∂x2
= a2x2nf ′2(ξ)
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2
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2

)(
n− 3

2
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2
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Adding equations (4.18)-(4.24), we get.
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(
n+ 1

2

)(
−n+ 1 + 2

2

)
(Tw − T∞)f(ξ)f ′(ξ)θ′(ξ)

= a2x2n−2

(
n+ 1

2

)2

(Tw − T∞)f 2(ξ)θ′′(ξ)

+ a2x2n−2

(
n+ 1

2

)(
−n+ 3

2

)
(Tw − T∞)f(ξ)f ′(ξ)θ′(ξ)

= a2x2n−2

(
n+ 1

2

)2

(Tw − T∞)f 2(ξ)θ′′(ξ)

− a2x2n−2
(
n+ 1

2

)(
n− 3

2

)
(Tw − T∞)f(ξ)f ′(ξ)θ′(ξ). (4.25)

Left hand side of (4.3) is

− axn−1
(n+ 1

2

)
(Tw − T∞)f(ξ)θ′(ξ) + λTa

2x2n−2
(n+ 1

2

)2
(Tw − T∞)f 2(ξ)θ′′(ξ)

− λTa2x2n−2
(
n+ 1

2

)(
n− 3

2

)
(Tw − T∞)f(ξ)f ′(ξ)θ′(ξ). (4.26)

Right hand side of (4.3) is

axn−1
(n+ 1

2

)
(Tw − T∞)

[
1

Pr

[
1 +

4

3
R
]
θ′′(ξ) +Nbθ′(ξ)φ′(ξ) +Ntθ′2(ξ) +Qθ(ξ)

]
.

(4.27)

Comparing (4.26) and (4.27)

− axn−1
(n+ 1

2

)
(Tw − T∞)f(ξ)θ′(ξ) + λTa

2x2n−2
(n+ 1

2

)2
(Tw − T∞)f 2(ξ)θ′′(ξ)

− λTa2x2n−2
(
n+ 1

2

)(
n− 3

2

)
(Tw − T∞)f(ξ)f ′(ξ)θ′(ξ)
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= axn−1
(n+ 1

2

)
(Tw − T∞)

[
1

Pr

[
1 +

4

3
R
]
θ′′(ξ) +Nbθ′φ′ +Ntθ′2(ξ) +Qθ(ξ)

]
,

− f(ξ)θ′(ξ) + λTax
n−1
(n+ 1

2

)
f 2(ξ)θ′′(ξ)− λTaxn−1

(
n− 3

2

)
f(ξ)f ′(ξ)θ′(ξ)

=
1

Pr

(
1 +

4

3
R
)
θ′′(ξ) +Nbθ′(ξ)φ′(ξ) +Ntθ′2(ξ) +Qθ(ξ),

− f(ξ)θ′(ξ) + λTax
n−1
[(n+ 1

2

)
f 2(ξ)θ′′(ξ)−

(
n− 3

2

)
f(ξ)f ′(ξ)θ′(ξ)

]
=

1

Pr

(
1 +

4

3
R
)
θ′′(ξ) +Nbθ′(ξ)φ′(ξ) +Ntθ′2(ξ) +Qθ(ξ),

− f(ξ)θ′(ξ) + γ1

[(n+ 1

2

)
f 2(ξ)θ′′(ξ)−

(
n− 3

2

)
f(ξ)f ′(ξ)θ′(ξ)

]
=

1

Pr

(
1 +

4

3
R
)
θ′′(ξ) +Nbθ′(ξ)φ′(ξ) +Ntθ′2(ξ) +Qθ(ξ),

1

Pr

(
1 +

4

3
R
)
θ′′(ξ)− γ1

[(n+ 1

2

)
f 2(ξ)θ′′(ξ)−

(
n− 3

2

)
f(ξ)f ′(ξ)θ′(ξ)

]
+ f(ξ)θ′(ξ) +Nbθ′(ξ)φ′(ξ) +Ntθ′2(ξ) +Qθ(ξ),(
1 +

4

3
R
)
θ′′(ξ)− Prγ1

[(n+ 1

2

)
f 2(ξ)θ′′(ξ)−

(
n− 3

2

)
f(ξ)f ′(ξ)θ′(ξ)

]
+ Prf(ξ)θ′(ξ) + PrNbθ′(ξ)φ′(ξ) + PrNtθ′2(ξ) + PrQθ(ξ). (4.28)

Now, we include below the procedure for the conversion of equation (4.4) into the

dimensionless form.

φ(ξ) =
C − C∞
Cw − C∞

,

C = (Cw − C∞)φ(ξ) + C∞.

∂C

∂x
= (Cw − C∞)φ′(ξ)

∂ξ

∂x
,

∂C

∂x
=

(
n− 1

2

)
x

n−3
2 y

√
a(n+ 1)

2ν
(Cw − C∞)φ′(ξ). (4.29)

∂C

∂y
= x

n−1
2

√
a(n+ 1)

2ν
(Cw − C∞)φ′(ξ). (4.30)

∂2C

∂y2
= xn−1

a(n+ 1)

2ν
(Cw − C∞)φ′′(ξ). (4.31)

∂2T

∂y2
= xn−1

a(n+ 1)

2ν
(Tw − T∞)θ′′(ξ). (4.32)

∂2C

∂x∂y
= x

n−3
2

√
(n+ 1)a

2ν

(
n− 1

2

)
(Cw − C∞)φ′(ξ)
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+ xn−2y

(
n− 1

2

)
(n+ 1)a

2ν
(Cw − C∞)φ′′(ξ). (4.33)

u
∂u

∂x

∂C

∂x
= axnf ′(ξ)

(
ax

3n−3
2 y

(
n− 1

2

)√
(n+ 1)a

2ν
f ′′(ξ) + naxn−1f ′(ξ)

)
(
x

n−3
2 y

(
n− 1

2

)√
(n+ 1)a

2ν
(Cw − C∞)φ′(ξ)

)
,

u
∂u

∂x

∂C

∂x
= axnf ′(ξ)

(
ax2n−3y2

(
n− 1

2

)2
(n+ 1)a

2ν
f ′′(ξ)φ′(ξ)(Cw − C∞)

+ nax
2n−5

2 y

(
n− 1

2

)√
(n+ 1)a

2ν
f ′(ξ)φ′(ξ)(Cw − C∞)

)
,

u
∂u

∂x

∂C

∂x
= a2x3n−3y2

(
n− 1

2

)2(
(n+ 1)a

2ν

)
(Cw − C∞)f ′(ξ)f ′′(ξ)φ′(ξ)

+ na2x
5n−5

2 y

(
n− 1

2

)√
(n+ 1)a

2ν
(Cw − C∞)f ′2(ξ)φ′(ξ). (4.34)

v
∂v

∂y

∂C

∂y
=

(
−xn−1ay

(
n− 1

2

)
f ′(ξ)− x

n−1
2

√
2νa

n+ 1

(
n+ 1

2

)
f(ξ)

)
(
−naxn−1f ′(ξ)− ax

3n−3
2 y

√
(n+ 1)a

2ν

(
n− 1

2

)
f ′′(ξ)

)
(
x

n−1
2

√
(n+ 1)a

2ν
(Cw − C∞)φ′(ξ)

)
,

v
∂v

∂y

∂C

∂y
= na2x

5n−5
2 y

(
n− 1

2

)√
(n+ 1)a

2ν
(Cw − C∞)f ′2(ξ)φ′(ξ)

+ a2x3n−3y2
(

(n+ 1)a

2ν

)(
n− 1

2

)2

(Cw − C∞)f ′(ξ)f ′′(ξ)φ′(ξ)

+ a2x
5n−5

2 y

(
n− 1

2

)(
n+ 1

2

)√
(n+ 1)a

2ν
(Cw − C∞)f(ξ)f ′′(ξ)φ′(ξ)

+ na2x2n−2
(
n+ 1

2

)
(Cw − C∞)f(η)f ′(ξ)φ′(ξ). (4.35)

u
∂v

∂x

∂C

∂y
= axnf ′(ξ)

(
− ax

3n−5
2 y2

(
n− 1

2

)2
√

(n+ 1)a

2ν
f ′′(ξ)

− (n− 1)xn−2ay

(
n− 1

2

)
f ′(ξ)− axn−2y

(
n− 1

2

)(
n+ 1

2

)
f ′(ξ)

− x
n−3
2

(
n− 1

2

)(
n+ 1

2

)√
2νa

n+ 1
f(ξ)

)(
x

n−1
2

√
(n+ 1)a

2ν
(Cw − C∞)φ′(ξ)

)
,

u
∂v

∂x

∂C

∂y
= −a2x3n−3y2

(
n− 1

2

)2(
(n+ 1)a

2ν

)
(Cw − C∞)f ′(ξ)f ′′(ξ)φ′(ξ)
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− (n− 1)a2x
5n−5

2 y

(
n− 1

2

)√
(n+ 1)a

2ν
(Cw − C∞)f ′2(ξ)φ′(ξ)

− a2x
5n−5

2 y

(
n− 1

2

)(
n+ 1

2

)√
(n+ 1)a

2ν
(Cw − C∞)f ′2(ξ)φ′(ξ)

− a2x2n−2
(
n− 1

2

)(
n+ 1

2

)
(Cw − C∞)f(ξ)f ′(ξ)φ′(ξ). (4.36)

v
∂u

∂y

∂C

∂x
=

(
−axn−1y

(
n− 1

2

)
f ′(ξ)− x

n−1
2

√
2νfa

n+ 1
f(ξ)

)(
ax

3n−1
2

√
2νa

n+ 1
f ′′(ξ)

)
(
x

n−3
2 y

(
n− 1

2

)
(Cw − C∞)φ′(ξ)

)
,

v
∂u

∂y

∂C

∂x
= −a2x3n−3y2

(
n− 1

2

)2(
(n+ 1)a

2ν

)
(Cw − C∞)f ′(ξ)f ′′(ξ)φ′(ξ

− a2x
5n−5

2 y

(
n− 1

2

)(
n+ 1

2

)√
(n+ 1)a

2ν
(Cw − C∞)f(ξ)f ′′(ξ)φ′(ξ).

(4.37)

2uv
∂2C

∂x∂y
= 2axnf ′(ξ)

(
− xn−1ay

(
n− 1

2

)
f ′(ξ)− x

n−1
2

(
n+ 1

2

)√
2νa

n+ 1
f(ξ)

)
(
x

n−3
2
n− 1

2

√
(n+ 1)a

2ν
(Cw − C∞)φ′(ξ) + xn−2y

n− 1

2

(n+ 1)a

2ν
(Cw − C∞)φ′′(ξ)

)
,

2uv
∂2C

∂x∂y
=

[
− 2a2x2n−1y

(
n− 1

2

)
f ′2(ξ)− 2ax

3n−1
2

(
n+ 1

2

)√
2νa

n+ 1
f(ξ)f ′(ξ)

]
(
x

n−3
2

√
(n+ 1)a

2ν
φ′(ξ) + xn−2y

(n+ 1)a

2ν
φ′′(ξ)

)(
n− 1

2

)
(Cw − C∞),

2uv
∂2C

∂x∂y
= −2a2x

5n−5
2 y

√
(n+ 1)a

2ν

(
n− 1

2

)(
n+ 1

2

)
(Cw − C∞)f(ξ)f ′(ξ)φ′′(ξ)

− 2a2y2x3n−3
(
n− 1

2

)2
(n+ 1)a

2ν
(Cw − C∞)f ′2(ξ)φ′′(ξ)

− 2a2x2n−2
(
n− 1

2

)(
n+ 1

2

)
(Cw − C∞)f(ξ)f ′(ξ)φ′(ξ)

− 2a2x
5n−5

2 y

√
(n+ 1)a

2ν

(
n− 1

2

)2

(Cw − C∞)f ′2(ξ)φ′(ξ). (4.38)

u2
∂2C

∂x2
= a2x2nf ′2(ξ)

(
xn−3y2

(
n− 1

2

)2(
a(n+ 1)

2ν

)
(Cw − C∞)φ′′(ξ)

+ x
n−5
2 y

(
n− 1

2

)(
n− 3

2

)√
(n+ 1)a

2ν
(Cw − C∞)φ′(ξ)

)
,

u2
∂2C

∂x2
= a2x3n−3y2

(
n− 1

2

)2(
(n+ 1)a

2ν

)
(Cw − C∞)f ′2(ξ)φ′′(ξ)
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+ a2x
5n−5

2 y

(
n− 1

2

)(
n− 3

2

)√
(n+ 1)a

2ν
(Cw − C∞)f ′2(ξ)φ′(ξ). (4.39)

v2
∂2C

∂y2
=

(
−xn−1ay

(
n− 1

2

)
f ′(ξ)− x

n−1
2

(
n+ 1

2

)√
2νa

n+ 1
f(ξ)

)2

(
xn−1

a(n+ 1)

2ν
(Cw − C∞)φ′′(ξ)

)
,

v2
∂2C

∂y2
= a2x3n−3y2

(
n− 1

2

)2(
(n+ 1)a

2ν

)
(Cw − C∞)f ′2(ξ)φ′′(ξ)

+ 2a2x
5n−5

2 y

√
(n+ 1)a

2ν

(
n− 1

2

)(
n+ 1

2

)
(Cw − C∞)f(ξ)f ′(ξ)φ′′(ξ)

+ a2x2n−2
(
n+ 1

2

)2

(Cw − C∞)f 2(ξ)φ′′(ξ). (4.40)

Adding equations (4.34)-(4.40), we get.

u
∂u

∂x

∂C

∂x
+ v

∂v

∂y

∂C

∂y
+ u

∂v

∂x

∂C

∂y
+ v

∂u

∂y

∂C

∂x
+ 2uv

∂2C

∂x∂y
+ u2

∂2C

∂x2
+ v2

∂2C

∂y2

= a2x3n−3y2
(
n− 1

2

)2(
(n+ 1)a

2ν

)
(Cw − C∞)f ′(ξ)f ′′(ξ)φ′(ξ)

+ na2x
5n−5

2 y

(
n− 1

2

)√
(n+ 1)a

2ν
(Cw − C∞)f ′2(ξ)φ′(ξ)

+ na2x
5n−5

2 y

(
n− 1

2

)√
(n+ 1)a

2ν
(Cw − C∞)f ′2(ξ)φ′(ξ)

+ a2x3n−3y2
(
n− 1

2

)2(
(n+ 1)a

2ν

)
(Cw − C∞)f ′(ξ)f ′′(ξ)φ′(ξ)

+ na2x2n−2
(
n+ 1

2

)
(Cw − C∞)f(ξ)f ′(ξ)φ′(ξ)

+ a2x
5n−5

2 y

(
n+ 1

2

)(
n− 1

2

)√
(n+ 1)a

2ν
(Cw − C∞)f(ξ)f ′′(ξ)φ′(ξ)

− a2x3n−3y2
(
n− 1

2

)2(
(n+ 1)a

2ν

)
(Cw − C∞)f ′(ξ)f ′′(ξ)φ′(ξ)

− (n− 1)a2x
5n−5

2 y

(
n− 1

2

)√
(n+ 1)a

2ν
(Cw − C∞)f ′2(ξ)φ′(ξ)

− a2x
5n−5

2 y

(
n− 1

2

)(
n+ 1

2

)√
(n+ 1)a

2ν
(Cw − C∞)f ′2(ξ)φ′(ξ)

− a2x2n−2
(
n− 1

2

)(
n+ 1

2

)
(Cw − C∞)f(ξ)f ′(ξ)φ′(ξ)
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− a2x3n−3y2
(
n− 1

2

)2(
(n+ 1)a

2ν

)
(Cw − C∞)f ′(ξ)f ′′(ξ)φ′(ξ)

− a2x
5n−5

2 y

(
n− 1

2

)(
n+ 1

2

)√
(n+ 1)a

2ν
(Cw − C∞)f(ξ)f ′′(ξ)φ′(ξ)

− 2a2x
5n−5

2 y

(
n− 1

2

)2√
(n+ 1)a

2ν
(Cw − C∞)f ′2(ξ)φ′(ξ)

− 2a2y2x3n−3

(
n− 1

2

)2
(n+ 1)a

2ν
(Cw − C∞)f ′2(ξ)φ′′(ξ)

− 2a2x2n−2

(
n− 1

2

)(
n+ 1

2

)
(Cw − C∞)f(ξ)f ′(ξ)φ′(ξ)

− 2a2x
5n−5

2 y

(
n− 1

2

)(
n+ 1

2

)√
(n+ 1)a

2ν
(Cw − C∞)f(ξ)f ′(ξ)φ′′(ξ)

+ a2x3n−3y2
(
n− 1

2

)2(
(n+ 1)a

2ν

)
(Cw − C∞)f ′2(ξ)φ′′(ξ)

+ a2x
5n−5

2 y

(
n− 1

2

)(
n− 3

2

)√
(n+ 1)a

2ν
(Cw − C∞)f ′2(ξ)φ′(ξ)

+ a2x3n−3y2
(
n− 1

2

)2(
(n+ 1)a

2ν

)
(Cw − C∞)f ′2(ξ)φ′′(ξ)

+ a2x2n−2
(
n+ 1

2

)2

(Cw − C∞)f 2(ξ)φ′′(ξ)

+ 2a2x
5n−5

2 y

(
n− 1

2

)(
n+ 1

2

)√
(n+ 1)a

2ν
(Cw − C∞)f(ξ)f ′(ξ)φ′′(ξ),

= a2x2n−2
(
n+ 1

2

)2

(Cw − C∞)f 2(ξ)φ′′(ξ)

+ a2x2n−2
[
n+ 1

2

][
n−

(
n− 1

2

)
− 2

(
n− 1

2

)]
(Cw − C∞)f(ξ)f ′(ξ)φ′(ξ),

= a2x2n−2
(
n+ 1

2

)2

(Cw − C∞)f 2(ξ)φ′′(ξ)

+ a2x2n−2
(
n+ 1

2

)(
n−

(
n− 1

2

)
− (n− 1)

)
(Cw − C∞)f(ξ)f ′(ξ)φ′(ξ),

= a2x2n−2
(
n+ 1

2

)2

(Cw − C∞)f 2(ξ)φ′′(ξ)

+ a2x2n−2
(
n+ 1

2

)(
2n− n+ 1

2
− n+ 1

)
(Cw − C∞)f(ξ)f ′(ξ)φ′(ξ),

= a2x2n−2
(
n+ 1

2

)2

(Cw − C∞)f 2(ξ)φ′′(ξ)

+ a2x2n−2
(
n+ 1

2

)(
2n− n+ 1− 2n+ 2

2

)
(Cw − C∞)f(ξ)f ′(ξφ′(ξ),



Numerical Solution of Cattaneo-Christov 57

= a2x2n−2
(n+ 1

2

)2
(Cw − C∞)f 2(ξ)φ′′(ξ)

+ a2x2n−2
(n+ 1

2

)(−n+ 1 + 2

2

)
(Cw − C∞)f(ξ)f ′(ξ)φ′(ξ),

= a2x2n−2
(n+ 1

2

)2
(Cw − C∞)f 2(ξ)φ′′(ξ)

+ a2x2n−2
(n+ 1

2

)(−n+ 3

2

)
(Cw − C∞)f(ξ)f ′(ξ)φ′(ξ),

= a2x2n−2
(n+ 1

2

)2
(Cw − C∞)f 2(ξ)φ′′(ξ)

− a2x2n−2
(
n+ 1

2

)(
n− 3

2

)
(Cw − C∞)f(ξ)f ′(ξ)φ′(ξ). (4.41)

DB
∂2C

∂y2
+

(
DT

T∞

)
∂2T

∂y2
= axn−1

(
n+ 1

2

)[
(ρC)f
(ρC)p

Nbφ′′(ξ) +
(ρC)f
(ρC)p

Ntθ′′(ξ)

]
.

(4.42)

Dm
∂2C

∂y2
+
DmKT

Tm

∂2T

∂y2
= (Cw − C∞)xn−1

(
a(n+ 1)

2ν

)
[Dmφ

′′(ξ) + SrαT θ
′′(ξ)] .

(4.43)

Using (4.29), (4.30) and (4.41) in the left side of (4.4), we get

u
∂C

∂x
+ v

∂C

∂y
+ λc

[
u
∂u

∂x

∂C

∂x
+ v

∂v

∂y

∂C

∂y
+ u

∂v

∂x

∂C

∂y
+ v

∂u

∂y

∂C

∂x
+ 2uv

∂2C

∂x∂y

+ u2
∂2C

∂x2
+ v2

∂2C

∂y2

]
= −axn−1

(
n+ 1

2

)
(Cw − C∞)f(ξ)φ′(ξ)

+ λca
2x2n−2

(
n+ 1

2

)2

(Cw − C∞)f 2(ξ)φ′′(ξ)

− λca2x2n−2
(
n+ 1

2

)(
n− 3

2

)
(Cw − C∞)f(ξ)f ′(ξ)φ′(ξ). (4.44)

Using (4.42) and (4.43) in the right side of (4.4), we get

DB
∂2C

∂y2
+

[
DT

T∞

]
∂2T

∂y2
+Dm

∂2C

∂y2
+
DmKT

Tm

∂2T

∂y2
= axn−1

(n+ 1

2

)[(ρC)f
(ρC)p

Nbφ′′(ξ)

+
(ρC)f
(ρC)p

Ntθ′′(ξ)
]

+ (Cw − C∞)xn−1
(
a(n+ 1)

2ν

)
[Dmφ

′′(ξ) + SrαT θ
′′(ξ)] .

(4.45)
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Comparing equation (4.44) and (4.45)

− axn−1
(
n+ 1

2

)
(Cw − C∞)f(ξ)φ′(ξ) + λca

2x2n−2

(
n+ 1

2

)2

(Cw − C∞)f 2(ξ)φ′′(ξ)

− λca2x2n−2
(
n+ 1

2

)(
n− 3

2

)
(Cw − C∞)f(ξ)f ′(ξ)φ′(ξ) =

+ axn−1
(n+ 1

2

)[(ρC)f
(ρC)p

Nbφ′′(ξ) +
(ρC)f
(ρC)p

Ntθ′′(ξ)
]

+ (Cw − C∞)xn−1
(
a(n+ 1)

2ν

)
[Dmφ

′′(ξ) + SrαT θ
′′(ξ)] ,

− f(ξ)φ′(ξ) + λcax
n−1

(
n+ 1

2

)
f 2(ξ)φ′′(ξ)− λcaxn−1

(
n− 3

2

)
f(ξ)f ′(ξ)φ′(ξ)

= +
((ρC)f

(ρC)p
Nbφ′′(ξ) +

(ρC)f
(ρC)p

Ntθ′′(ξ)
)

+
1

ν
[Dmφ

′′(ξ) + SrαT θ
′′(ξ)] ,

− f(ξ)φ′(ξ) + λcax
n−1

((
n+ 1

2

)
f 2(ξ)φ′′(ξ)−

(
n− 3

2

)
f(ξ)f ′(ξ)φ′(ξ)

)

=
(ρC)f

(Cw − C∞)(ρC)p

(
Nbφ′′(ξ) +Ntθ′′(ξ)

)
+
Dm

ν
φ′′(ξ) +

SrαT
ν

θ′′(ξ),

− f(ξ)φ′(ξ) + γ2

((
n+ 1

2

)
f 2(ξ)φ′′(ξ)−

(
n− 3

2

)
f(ξ)f ′(ξ)φ′(ξ)

)

=
(ρC)fNb

(Cw − C∞)(ρC)p

(
φ′′(ξ) +

Nt

Nb
θ′′(ξ)

)
+
Dm

ν
φ′′(ξ) +

SrαT
ν

θ′′(ξ),

− f(ξ)φ′(ξ) + γ2

((
n+ 1

2

)
f 2(ξ)φ′′(ξ)−

(
n− 3

2

)
f(ξ)f ′(ξ)φ′(ξ)

)
=

1

Le

(
φ′′(ξ) +

Nt

Nb
θ′′(ξ)

)
+

1

Le
φ′′(ξ) + Sr

1

Pr
θ′′(ξ),

− Lef(ξ)φ′(ξ) + Leγ2

((
n+ 1

2

)
f 2(ξ)φ′′(ξ)−

(
n− 3

2

)
f(ξ)f ′(ξ)φ′(ξ)

)
= φ′′(ξ) +

Nt

Nb
θ′′(ξ) + φ′′(ξ) + Sr

Le

Pr
θ′′(ξ),

− PrLef(ξ)φ′(ξ) + PrLeγ2

((
n+ 1

2

)
f 2(ξ)φ′′(ξ)−

(
n− 3

2

)
f(ξ)f ′(ξ)φ′(ξ)

)
= 2Prφ′′(ξ) +

PrNt

Nb
θ′′(ξ) + SrLeθ

′′(ξ),

2Prφ′′(ξ)− PrLeγ2

[(
n+ 1

2

)
f 2(ξ)φ′′(ξ)−

(
n− 3

2

)
f(ξ)f ′(ξ)φ′(ξ)

]

+

(
PrNt

Nb
+ SrLe

)
θ′′(ξ) + PrLef(ξ)φ′(ξ) = 0. (4.46)
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Now discussing the procedure for conversion of boundary conditions into dimen-

sionless form.

u = Uw(x) = axn, at y = 0.

u = af ′(ξ)xn,

⇒ af ′(ξ)xn = axn,

⇒ axnf ′(ξ) = axn,

⇒ f ′(ξ) = 1, at ξ = 0.

⇒ f ′(0) = 1.

v = vw(x), at y = 0.

⇒ − x
n−1
2

√
(n+ 1)νa

2

(
f(ξ) + ξf ′(ξ)

(
n− 1

n+ 1

))
= vw(x), at ξ = 0.

⇒ − x
n−1
2

√
(n+ 1)νa

2
f(ξ) = vw(x), at ξ = 0.

⇒ f(ξ) = − vw(x)
√

2

x
n−1
2
√
aν(n+ 1)

,

⇒ f(0) = S.

T = Tw, at y = 0.

⇒ θ(ξ)(Tw − T∞) + T∞ = Tw,

⇒ θ(ξ)(Tw − T∞) = (Tw − T∞),

⇒ θ(ξ) = 1, at ξ = 0.

⇒ θ(0) = 1.

C = Cw, at y = 0.

⇒ φ(ξ)(Cw − C∞) + C∞ = Cw,

⇒ φ(ξ)(Cw − C∞) = (Cw − C∞),

⇒ φ(ξ) = 1, at ξ = 0.

⇒ φ(0) = 1.

u→ (0), as y →∞.

⇒ af ′(ξ)xn → (0),



Numerical Solution of Cattaneo-Christov 60

⇒ f ′(ξ)→ (0), as ξ →∞.

⇒ f ′(ξ)→ 0.

T → T∞, as y →∞.

⇒ θ(ξ)(Tw − T∞) + T∞ → T∞,

⇒ θ(ξ)(Tw − T∞)→ 0,

⇒ θ(ξ)→ 0, as ξ →∞.

⇒ θ(∞)→ 0.

C → C∞, as y →∞.

⇒ φ(ξ)(Cw − C∞) + C∞ → C∞,

⇒ φ(ξ)(Cw − C∞)→ 0,

⇒ φ(ξ)→ 0, as ξ →∞.

⇒ φ(∞)→ 0.

The final dimensionless form of the governing model, is

f ′′′(ξ) + f(ξ)f ′′(ξ)−

(
2n

n+ 1

)
f ′2(ξ)−Mf ′(ξ) = 0. (4.47)

(
1 +

4

3
R
)
θ′′(ξ)− Prγ1

[(n+ 1

2

)
f 2(ξ)θ′′(ξ)−

(
n− 3

2

)
f(ξ)f ′(ξ)θ′(ξ)

]
+ Prf(ξ)θ′(ξ) + PrNbθ′(ξ)φ′(ξ) + PrNtθ′2(ξ) + PrQθ(ξ). (4.48)

2Prφ′′(ξ)− PrLeγ2

[(
n+ 1

2

)
f 2(ξ)φ′′(ξ)−

(
n− 3

2

)
f(ξ)f ′(ξ)φ′(ξ)

]

+

[
PrNt

Nb
+ SrLe

]
θ′′(ξ) + PrLef(ξ)φ′(ξ) = 0. (4.49)

The associated BCs (4.5) in the dimensionless form are,

f(0) = S, f ′(0) = 1, θ(0) = 1, φ(0) = 1

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0.

 (4.50)
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Different parameters used in equations (4.47)-(4.49) are formulated as follows.

M =
2σB2

0x
n

ρa(n+ 1)
, Le =

ν

DB

R =
4σ∗T 3

∞
kk∗

, P r =
ν

α
,

S = − vw(x)

x
n−1
2

√
aν(n+ 1)

√
2, Q =

Q0

(n+ 1)ν(ρc)f
, γ1 = λTax

n−1,

γ2 = λCax
n−1, Nb =

(ρc)pDB(Cw − C∞)

(ρc)fν
, Nt =

(ρc)pDT (Tw − T∞)

(ρc)fT∞ν
.

4.3 Solution Methodology

The ordinary differential equation (4.47) has been resolved using the shooting

method.

f = Y1, f ′ = Y ′1 = Y2, f ′′ = Y ′′1 = Y ′2 = Y3, f ′′′ = Y ′3 .

As a result the momentum equation is converted into the following system of first

order ODEs.

Y ′1 = Y2, Y1(0) = 0.

Y ′2 = Y3, Y2(0) = 1.

Y ′3 =

(
2n

n+ 1

)
Y 2
2 − Y1Y3 +MY2, Y3(0) = w.

The above IVP will be numerically solved by RK-4. The missing condition w is

to be chosen such that.

Y2(ξ∞, w) = 0.

Newton’s method will be used to find w. This method has the following iterative

scheme.

wn+1 = wn −
Y2(ξ∞, wn)

∂
∂wn

(Y2(ξ∞, wn))
.
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We further introduce the following notations,

∂Y1
∂w

= Y4,
∂Y2
∂w

= Y5,
∂Y3
∂w

= Y6.

As a result of these new notations the Newton’s iterative scheme gets the form.

wn+1 = wn −
Y2(ξ∞, wn)

Y5(ξ∞, wn)
.

Now differentiating the system of three first order ODEs with respect to w, we get

another system of ODEs, as follows.

Y ′4 = Y5, Y4(0) = 0.

Y ′5 = Y6, Y5(0) = 0.

Y ′6 =

(
4n

n+ 1

)
Y2Y5 − Y4Y3 − Y1Y6 +MY5, Y6(0) = 1.

The stopping criteria for the Newton’s technique is set as.

| Y2(ξ∞, w) |< ε,

where ε > 0 is an arbitrarily small positive number. From now onward ε has been

taken as 10−10.

Also, for equations (4.48) and (4.49), the following notation have been used.

θ = Y1, θ′ = Y ′1 = Y2, θ′′ = Y ′2 .

φ = Y3, φ′ = Y ′3 = Y4, φ′′ = Y ′4 .

A1 =

(
1 +

4

3
R

)
, A2 =

(
A1 − Prλa

(
n+ 1

2

)
f 2

)
,

A3 =

(
2Pr − Prλb

(
n+ 1

2

)
f 2

)
, A4 =

(
PrNt

Nb
+ SrLe

)
.
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The system of equations (4.48) and (4.49), can be written in the form of the

following first order coupled ODEs.

Y ′1 = Y2, Y1(0) = 1.

Y ′2 = −Pr
A2

[
λa

(n− 3

2

)
ff ′Y2 + fY2 +NbY2Y4 +NtY 2

2 +QY1

]
, Y2(0) = p.

Y ′3 = Y4, Y3(0) = 1.

Y ′4 = − 1

A3

[
Prλb

(n− 3

2

)
ff ′Y4 + PrLefY4 − A4

[
Pr

A2

[
λa

(n− 3

2

)
ff ′Y2

+ fY2 +NbY2Y4 +NtY 2
2 +QY1

]]]
, Y4(0) = q.

The RK-4 method has been taken into consideration for solving the above initial

value problem. For the above system of equtions, the missing conditions are to be

chosen such that.

Z1(ξ∞, p, q) = 0, Z3(ξ∞, p, q) = 0.

To solve the above algebaric equations, we apply the Newton’s method which has

the following scheme.

p
q


(n+1)

=

p
q


(n)

−

∂Y1∂p ∂Y1
∂q

∂Y3
∂p

∂Y3
∂q

−1
(n)

Y1
Y3


(n)

Now, introduce the following notations,

∂Y1
∂p

= Y5,
∂Y2
∂p

= Y6,
∂Y3
∂p

= Y7,
∂Y4
∂p

= Y8.

∂Y1
∂q

= Y9,
∂Y2
∂q

= Y10,
∂Y3
∂q

= Y11,
∂Y4
∂q

= Y12.

As the result of these new notations, the Newton’s iterative scheme gets the form.

p
q


(n+1)

=

p
q


(n)

−

Y5 Y9

Y7 Y11

−1
(n)

Y1
Y3


(n)
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Now differentiating the system of four first order ODEs with respect to p, and q

we get another system of ODEs, as follows.

Y ′5 = Y6, Y5(0) = 0.

Y ′6 = −Pr
A2

[
λa

(n− 3

2

)
ff ′Y6 + fY6 +Nb(Y6Y4 + Y2Y8) + 2NtY2Y6 +QY5

]
,

Y6(0) = 1.

Y ′7 = Y8, Y7(0) = 0.

Y ′8 = − 1

A3

[
Prλb

(n− 3

2

)
ff ′Y8 + PrLefY8 − A4

[
Pr

A2

[
λa

(n− 3

2

)
ff ′Y6

+ fY6 +Nb(Y6Y4 + Y2Y8) + 2NtY2Y6 +QY5

]]]
, Y8(0) = 0.

Y ′9 = Y10, Y9(0) = 0.

Y ′10 = −Pr
A2

[
λa

(n− 3

2

)
ff ′Y10 + fY10 +Nb(Y10Y4 + Y2Y12) + 2NtY2Y10 +QY9

]
,

Y10(0) = 0.

Y ′11 = Y12, Y11(0) = 0.

Y ′12 = − 1

A3

[
Prλb

(n− 3

2

)
ff ′Y12 + PrLefY12 − A4

[
Pr

A2

[
λa

(n− 3

2

)
ff ′Y10

+ fY10 +Nb(Y10Y4 + Y2Y12) + 2NtY2Y10 +QY9

]]]
, Y12(0) = 1.

The stopping criteria for the Newton’s method is set as.

max{|Z1(ξ∞, p
n, qn)|, |Z3(ξ∞, p

n, qn)|} < ε.

4.4 Representation of Graphs and Tables

The principle object is about to examine the effects of different parameters against

the velocity f ′(ξ), temperature θ(ξ) and concentration distribution φ(ξ). The im-

pact of different factors like nonlinear stretching parameter n, magnetic parameter

M , thermal radiation R and Lewis number Le is observed graphically. Numerical



Numerical Solution of Cattaneo-Christov 65

outcomes of the skin friction coefficient, local Nusselt number and local Sherwood

number for the distinct values of some fixed parameters are shown in Table. The

missing initial conditions for θ(ξ) and φ(ξ) can be chosen from [−1.6 − 0.8]. It

is remarkable that the interval mentioned offers a considerable flexibility for the

choice of the initial guess.

Figure 4.1 implies the effect of M on velocity distribution.It depict clearly that

M and f ′(ξ) are reciprocally related such that increasing M will decrease f ′(ξ).

Figures 4.2 shows the relation between magnetic field and temperature profile.An

increase in value of M increase temperature θ(ξ) .

Figures 4.3 and 4.4 emphasize impact of stretching parameter n on f ′(ξ) and θ(ξ).

Elevating the value of n results in drop in value of f ′(ξ) and θ(ξ). Figures 4.5 and

4.6 relate wall transpiration parameter S to velocity and temperature profiles boht

velocity and temperature profiles shows inverse relation along S.

Figure 4.7 denotes the changing behaviour of temperature on varrying values of

R, Rising R will ultimately increase θ(ξ). Enhancement in Prandtl number Pr

value as presented in Figure 4.8 decrease temperature θ(ξ). Because of direct

proportionality to velocity distribution and an inverse proportionality to chemical

diffusitivity,rise in Pr causes drop in values of thermal diffusion rate. Temperature

falls exponentially .

Effects of Q on θ(ξ) are elaborated in Figure 4.9. θ(ξ) increase on increasing Q.

Figures 4.10 and 4.11 discuss Brownian motion causing fluctuations in values of

θ(ξ) and φ(ξ).Faster the motion the lower the values of θ(ξ) and φ(ξ).

Figures 4.12 and 4.13 demonstrates changing behaviours of concentration distribu-

tion φ(ξ) and temperature distribution θ(ξ) on changing thermosphoresis paramter

Nt. Both shows an elevation in values of θ(ξ) and φ(ξ) with increasing value of

Nt. Impact of γ on temperature distribution is depicted in Figure 4.14. increase

γ cause a fall in temperature profile θ(ξ). Figure 4.15 emphasize on the direct

proportionality between Soret number Sr and temperature profile θ(ξ). Increase

in one entity increase the other. Figure 4.16 explains the attainment of lower

values of moleculer diffusivity and thermal boundary layer. Because of an inverse

relationship between cocentration profile φ(ξ) and lewis number Le.
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Table 4.1: Results of −(Rex)
−1
2 Nux and −(Rex)

−1
2 Shx some fixed parameters

n = 2.0, M = 0.5, S = 0.5

R Pr Nt Nb Q Le Sr γ −(Rex)
−1
2 Nux −(Rex)

−1
2 Shx

0.1 2.0 0.2 0.2 0.1 2.0 0.5 0.1 1.464760 0.211070

0.0 1.426372 0.115312

0.5 1.574809 0.456887

1.0 1.651019 0.621781

1.0 0.830902 0.444123

1.5 1.168853 0.319153

1.75 1.321128 0.263688

0.0 1.697908 0.741304

0.1 1.576336 0.453268

0.15 1.519356 0.326832

0.5 1.160535 0.677052

1.0 0.727135 0.896124

1.5 0.408569 0.998184

0.0 1.577988 0.137817

0.2 1.340600 0.291187

0.5 0.852078 0.604155

1.0 1.563554 -0.214846

3.0 1.400355 0.611758

5.0 1.326035 1.365767

0.1 1.430799 0.459807

0.3 1.447675 0.337001

0.7 1.482057 0.081953

0.0 1.322942 0.264219

0.2 1.629795 0.141068

0.3 1.823468 0.049235
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Figure 4.1: Change in f ′(ξ) for M .
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Figure 4.2: Change in θ(ξ) for M .
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Figure 4.3: Change in f ′(ξ) for n.
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Figure 4.4: Change in θ(ξ) for n.
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Figure 4.5: Change in f ′(ξ) for S.
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Figure 4.6: Change in θ(ξ) for S.
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Figure 4.7: Change in θ(ξ) for R.
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Figure 4.8: Change in θ(ξ) for Pr.
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Figure 4.9: Change in θ(ξ) for Q.
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Figure 4.10: Change in θ(ξ) for Nb.
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Figure 4.11: Change in φ(ξ) for Nb.
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Figure 4.12: Change in θ(ξ) for Nt.
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Figure 4.13: Change in φ(ξ) for Nt.
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Figure 4.14: Change in θ(ξ) for γ1.
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Figure 4.15: Change in φ(ξ) for Sr.
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Chapter 5

Conclusion

In this thesis, the work of [50] is reviewed and extended by considering Cattaneo-

Christov Double Diffusion in the temperature equation and in the concentration

equation . First of all, using similarity transformation,the momentum, energy eand

concentration equations are transformed into the ODEs. By using the shooting

technique, numerical solution has been found for the transformed ODEs. Using

different values of the governing parameters, the results are presnted in the form

of tables and graphs for velocity, temperature and concentration profiles. The key

findings of the current research can be summarized as below:

• Increasing the values of M , the velocity profile decreases while the temper-

ature profile increases.

• θ(ξ) is increased by rising the values of R and Q.

• The velocity profile and temperature distribution are decreased due to the

increasing values of the wall transpiration paramater S.

• The temperature profile decreases while rising the values of Prandtle number.

• An increment is observed in Nux by increasing the values of Pr.

• By rising the values of Soret number Sr, an increment is noticed in the

concentration profile .
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• By increasing the values of Nt, the concentration profile is increased.

• Temperature profile rises as Nb rises.

• Shx numerical values increase as by increasing the value of Le.

• As a result of the ascending values of the parameter γ1, the values of Nux

are increased while Shx is decreased.
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